Resources
FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong
Institution | Title | Type | Date | Author(s) | Abstract | Link |
---|---|---|---|---|---|---|
HKUST | BIM-based Automatic Piping Layout Design and Schedule Optimization | Thesis | 08/2020 | Jyoti SINGH | Piping system is one crucial component in civil infrastructure that is designed to collect and transport fluid from the various sources to the point of distribution. The design, manufacture, coordination, scheduling, and installation of pipe systems is an important and necessary task and is one of the most time-consuming and complicated jobs in any piping project. Therefore, it is important and necessary to perform pipe systems design and scheduling efficiently. Better understanding of the complex design logic and installation options of a pipe system can enhance the reliability of designing and scheduling, which is crucial to achieve smooth and steady design and schedule flow. An efficient designing and scheduling of piping systems become more and more challenging due to various constraints such as physical, design, economical, and installation constraint. Current practice in the architecture, engineering and construction (AEC) industry involves pipe system design and installation as per enforced design codes, either by manual calculations, or by partial automation using computer-aided design software. Manual calculations are based on the experience of consultants and design codes, which is labor intensive, time consuming, and unadaptable to changes, and often leads to mistakes due to tedious nature of pipe design and coordination problems and the numerous calculations and decision-making involved. Therefore, complete automation with design and schedule optimization are required to economically plan pipe system design layout and generation of installation schedule. Nowadays, Building Information Modelling (BIM) has been increasingly applied for architectural and structural design in civil engineering, especially in the building sector, since BIM have advantages for digital representation and information management. BIM technology is used to capture the 3D geometric and semantic information of the ceiling space, building components and pipe system information and parameters. BIM technology is used to capture the valuable information from 3D models to assist time based 4D modeling. However, existing research of BIM application for piping system design in building sector is lacking. To tackle the limitation of existing research, this thesis aims to develop an automated BIM-based approach for pipe systems design and schedule optimization. For the design of pipe system layout, various factors such as building space geometry, system requirements, design code specifications, and locations and configurations of relevant equipments are considered. A framework based on building information modeling (BIM) for automatic pipe system design optimization in 3D environment. Heuristic algorithms are modified and used in a directed weighted graph to obtain the optimal feasible route for pipe system layout. Clashes among pipes and with building components are considered and subsequently avoided in the design optimization. The developed framework considers one-to-one, one-to-many, many-to-one connections of the pipe network routing. Comparison between heuristic routing algorithms is also presented in this research. For installation schedule generation, this research proposes a new approach to automate pipe installation coordination and schedule optimization using 4D BIM. Category-based matching rules are used to automate the pairing and integration between 3D BIM models and installation activities. Constraint based analysis by sequence rule is developed to generate favorable sequence and coordination between pipe systems. Heuristic algorithm is adopted to optimize the generated practical schedules based on formulated objective function. All developed BIM-based framework and approaches are illustrated with related examples. Compared to current practices, these proposed approaches significantly reduce the time and cost for pipe system design layout and generating installation schedule. This research has three parts. The first part is background study and literature review on pipe systems design and scheduling. The second part applies BIM-based framework to design piping system, including the following three studies: (1) an automated single pipe system design using modular approach, (2) multiple pipe system layout design optimization, and (3) comparison of developed approach with other optimization methods. The third part applies BIM-based framework for piping coordination and scheduling optimization |
N.A. |
HKU | BIM-based Building Approval E-submission in Hong Kong: Prospects and Challenges | Thesis | 04/2016 | HUI Put | -- | N.A. |
HKUST | BIM-based Daylighting and Energy Analysis on the HKUST Campus | Report | 06/2019 | Quazi Samira Rahman | Building Information Modelling (BIM) based simulation models have been consistently used to automate prolonged building performance modelling processes such as thermal comfort assessment and energy analysis, enabling fast acquisition of results. Recent studies indicate that the demand for sustainable building facilities with minimal environmental impact is growing day by day. BIM is foreseen as a savior in terms of technology to unravel laborious engineering problems in a short span of time and analyse the conditions in a given space comprehensively as well as determine efficiency of built environment. This study presents how building information modelling can be utilized to address thermal comfort and energy efficiency in buildings in the operation phase, greatly contributing to achieving optimized solution. The study primarily deals with multi physical investigation on performance assured by ventilating system in supplying air quality and determining the potentials of comfort improvement and energy savings for the control of ventilation rate by proposing optimized method for relocating supply air duct. The focus of this thesis is limited to IAS lecture theatre at HKUST with respect to current set points for the supply air temperature. | N.A. |
HKUST | BIM-based Daylighting and Energy Analysis on the HKUST Campus | Report | 06/2018 | LIU, KING HB WANG Xiaohan William Yat Tang FUNG |
With the acceleration of urbanization, the building energy consumption in China accounts for 20% of the total energy consumption, of which the depleting of residential energy accounts for 60.3%. A residential building-hall 6 in HKUST campus is chosen and energy consumption and daylighting is analyzed and optimized. After literature review and learning the advantages, disadvantages and application of different software about energy analysis, I choose some BIM-related software to conduct energy and daylight analysis and consumption, such as Autodesk Revit, eQUEST and Insight 360 based on Building Information Modeling (BIM). For energy analysis, annual energy consumption is 795.2 mWh and half of it is space cooling.In our analysis, the illuminance levels of the building are 52% and 68% at 9 am and 3 pm respectively, which exceed the passing criteria, so daylighting of this residential building can meet the LEED requirement. The results in this project are useful for both building energy conversation and creating a comfortable living environment in future. |
N.A. |
HKUST | BIM-Based Daylighting and Energy Analysis on UG Hall 7 of HKUST | Report | 06/2016 | Tianzhu QIN Huan HE Avinash SINGHAL |
BIM is a three-dimensional digital based model or technology with various project-related information inside. It is widely used in modern building industry. As buildings are consuming so much energy today, building energy save has become an important part of a project’s optimization. To achieve the purpose of saving and controlling a building's energy consumption by BIM related software prediction and adjustment and control is a simple and effective strategy. This project aims to make energy-saving analyzes of STUDENT HALL 7 of HKUST, the main study method is: Revit 3D model—Green Building Studio energy analysis—solar panel analysis—PVGIS analysis—ECOTECT environmental analysis. Firstly obtained the three-dimensional model of Hall 7 through REVIT, and then send the model to Autodesk Green Building Studio to make energy consumption analysis, than make solar panel analysis of the building to find the energy save of panels, afterwards use PVGIS to check if the saving ratio is rational. What’s more, we also import the REVIT into ECOTECT to make further analysis. |
N.A. |
HKUST | BIM-based framework for automatic scheduling of facility maintenance work orders | Journal | 03/2018 | Chen, W., Chen, K., Cheng, J.C.P., Wang, Q., and Gan, V.J.L. | Although more than 65% of the total cost in facility management (FM) comes from facility maintenance management (FMM), there is a lack of efficient maintenance strategies and right decision making approaches to reduce FMM costs. Building information modeling (BIM) has been developed as a potential technology for FMM in buildings. This study proposes an FMM framework based on BIM and facility management systems (FMSs), which can provide automatic scheduling of maintenance work orders (MWOs) to enhance good decision making in FMM. In this framework, data are mapped between BIM and FMSs according to the Industry Foundation Classes (IFC) extension of maintenance tasks and MWO information in order to achieve data integration. After bi-directional data transmission between the BIM models and FMSs, work order information is visualized in BIM via API to identify components that have failed. Second, geometric and semantic information of the failure components is extracted from the BIM models to calculate the sub-optimal maintenance path in the BIM environment. Third, the MWO schedule is automatically generated using a modified Dijkstra algorithm that considers four factors, namely, problem type, emergency level, distance among components, and location. Illustrative examples are given in the paper to validate the feasibility and effectiveness of the proposed framework in indoor and outdoor 3D environments. | Link |