FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong


Below Information is provided by the Higher Insitutions signed MoU with CIC.



Date: From


Institution Title Type Date Author(s) Abstract Link
HKUST A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning Journal 08/2014 Kim, M.-K., Cheng, J.C.P., Sohn, H., and Chang, C.-C. This study presents a systematic and practical approach for dimensional and surface quality assessment of precast concrete elements using building information modeling (BIM) and 3D laser scanning technology. As precast concrete based rapid construction is becoming commonplace and standardized in the construction industry, checking the conformity of dimensional and surface qualities of precast concrete elements to the specified tolerances has become ever more important in order to prevent failure during construction. Moreover, as BIM gains popularity due to significant developments in information technology, an autonomous and intelligent quality assessment system that is interoperable with BIM is needed. The current methods for dimensional and surface quality assessment of precast concrete elements, however, rely largely on manual inspection and contact-type measurement devices, which are time demanding and costly. In addition, systematic data storage and delivery systems for dimensional and surface quality assessment are currently lacking. To overcome the limitations of the current methods for dimensional and surface quality assessment of precast concrete elements, this study aims to establish an end-to-end framework for dimensional and surface quality assessment of precast concrete elements based on BIM and 3D laser scanning. The proposed framework is composed of four parts: (1) the inspection checklists; (2) the inspection procedure; (3) the selection of an optimal scanner and scan parameters; and (4) the inspection data storage and delivery method. In order to investigate the feasibility of the proposed framework, case studies assessing the dimensional and surface qualities of actual precast concretes are conducted. The results of the case studies demonstrate that the proposed approach using BIM and 3D laser scanning has the potential to produce an automated and reliable dimensional and surface quality assessment for precast concrete elements. Link
HKUST Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM Journal 09/2016 Kim, M.-K., Wang, Q., Park, J.-W., Cheng, J.C.P., Chang, C.-C., and Sohn, H. This study presents a quality inspection technique for full-scale precast concrete elements using laser scanning and building information modeling (BIM). In today's construction industry, there is an increasing demand for modularization of prefabricated components and control of their dimensional quality during the fabrication and assembly stages. To meet these needs, this study develops a non-contact dimensional quality assurance (DQA) technique that automatically and precisely assesses the key quality criteria of full-scale precast concrete elements. First, a new coordinate transformation algorithm is developed taking into account the scales and complexities of real precast slabs so that the DQA technique can be fully automated. Second, a geometry matching method based on the Principal Component Analysis (PCA), which relates the as-built model constructed from the point cloud data to the corresponding as-designed BIM model, is utilized for precise dimension estimations of the actual precast slab. Third, an edge and corner extraction algorithm is advanced to tackle issues encountered in unexpected conditions, i.e. large incident angles and external steel bars being located near the edge of precast concrete elements. Lastly, a BIM-assisted storage and delivery approach for the obtained DQA data is proposed so that all relevant project stakeholders can share and update DQA data through the manufacture and assembly stages of the project. The applicability of the proposed DQA technique is validated through field tests on two full-scale precast slabs, and the associated implementation issues are discussed. Field test results reveal that the proposed DQA technique can achieve a measurement accuracy of around 3.0 mm for dimension and position estimations. Link
HKUST A BIM-based automated site layout planning framework for congested construction sites Journal 08/2015 Kumar, S., and Cheng, J.C.P. Site layout planning is often performed on construction sites to find the best arrangement of temporary facilities so that transportation distances of on-site personnel and equipment are minimized. It could be achieved by creating dynamic layout models, which capture the changing requirements of construction sites. However, formulating such models is extremely tedious because it requires much manual data input and changes to design and construction plans are manually updated by layout planners. This study presents an automated framework of creating dynamic site layout models by utilizing information from BIM. The A* algorithm is used in conjunction with genetic algorithms to develop an optimization framework that considers the actual travel paths of on-site personnel and equipment. To address the space limitation on site, our model optimizes the dimensions of facilities and also considers interior storage within buildings under construction. A case example is demonstrated to validate this framework and shows a 13.5% reduction in total travel distance compared with conventional methods. Link
HKUST Multi-zone indoor CFD under limited information: An approach coupling solar analysis and BIM for improved accuracy Journal 10/2020 Kwok, H.H.L., Cheng, J.C.P., Li, A.T.Y., Tong, J.C.K., and Lau, A.K.H. It is important to monitor the indoor air quality and thermal comfort of an office environment for the wellbeing of its occupants, and, to do so, computational fluid dynamics simulation is more cost-effective than measuring an entire floor. Computational fluid dynamics simulation has been used by previous studies for single rooms and partitioned spaces, but not for office floors with multi-zone ventilation systems, and air infiltrations between different zones through closed doors have been neglected. Also, since it is often not possible to take measurements across an entire floor due to concerns of tenant privacy, few studies have used the limited obtainable field measurements to validate multi-zone computational fluid dynamics simulations. This study describes a methodology to conduct indoor multi-zone steady-state computational fluid dynamics simulation, with improved accuracy, on a typical office floor where there is limited information on carbon dioxide concentrations and temperatures. Heat and mass conservation equations were used to compensate for the lack of information. The mechanical ventilation and air conditioning layout was considered along with the sources of heat and carbon dioxide emissions. To improve the accuracy of the simulation on temperature, a solar analysis, based on building geometry, orientation, materials, location, and weather, was conducted to estimate any solar heat gain and distribution through curtain walls. Building information modeling supported the solar analysis and provided geometric information for the computational fluid dynamics simulation. The methodology was validated by a real case of a commercial building, where the accuracy of the temperature simulation improved by 9.9%. Link
HKUST Analysis of Urban Walkability Using BIM and 3D GIS Models FYP 06/2020 LAI, Chi Ching
POON, Kwok Ho
Walkability, which is defined as the friendliness of a city or district towards walking, has been evaluated in the current Urban Design Report released by the Planning Department. The ultimate target of urban planning is not only being walkable but also provides comfortable walkways for pedestrians to travel through the city. Surveying and walking audit are the two common methods to measure the walkability of a district. However, the two methods are subjected to personal views and labor-intensive in data collection. This study tries to integrate Building Information Modeling (BIM), medial axis transform (MAT) network, and pedestrian flow simulation to analyze the walkability of Kwun Tong District. This approach digitizes the study region with rich geometric and semantic information for comprehensive analysis, which could present high similarity to the real environment. The BIM model of this study is a 3D model of the Kwun Tong District binding with information of the walking facilities such as the opening hours and slope of the walkway. The 3D pedestrian network, which indicates the walkable paths in the 3D model with walkway information, is built on the BIM model in order to calculate the time cost using a self-defined utility function. Pathfinder is used for pedestrian flow simulation to capture videos of pedestrians walking in the specific route in the BIM model, which gives realistic and clear illustrations in the walking environment. This study covers the area along Ngau Tau Kok Station to Kwun Tong Station, including residential area and commercial area, which is able to simulate various pedestrian walking behaviors in different districts. Three phases of simulations are carried out in the study region in this project, trying to demonstrate the working principle of the study method by analyzing the walkability of a specific region, sorting out the problems, and trying to improve the walkability with alteration in the BIM model. The ultimate target of the study is to provide a platform for walkability analysis so that the effectiveness of the urban planning policies can be simulated before adoption. N.A.
HKU Communication in Construction: A Cost Management Perspective through Bim Case Studies Thesis 04/2017 LAW Cheuk Fung -- N.A.