Resources
FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong
Institution | Title | Type | Date | Author(s) | Abstract | Link |
---|---|---|---|---|---|---|
HKUST | Social BIMCloud – A Distributed Cloud-based BIM Framework for Object-based Lifecycle Information Exchange and Supply Chain Integration | Thesis | 08/2015 | Moumita DAS | Due to its fragmented and multi-domain architecture, the AEC (architecture, engineering, and construction) industry faces the issues of data transfer efficiency and data consistency while exchanging large BIM files. In this thesis, a cloud based BIM framework, called Social BIMCloud is presented for building design and management of lifecycle activities. Social BIMCloud addresses the issue of data transfer efficiency by reducing the size of the BIM files being exchanged through dynamic splitting and merging mechanisms. Data consistency is also improved by hosting a common integrated BIM model which is updated partially instead of generating a new BIM file for every new change, which usually leads to data duplicity. This collaborative framework, Social BIMCloud is termed “Social” in particular, as it captures and manages the formal and informal social interactions that take place in a construction project. The methodology for capturing and managing social interactions through Social BIMCloud has been demonstrated in this thesis by integrating it with popular BIM software, Autodesk Revit. Social BIMCloud provides the scope for extending and integrating it with external planning and analysis applications in a plug-and-play manner for lifecycle integration. In this thesis, methodologies and demonstrations have been presented for extending and integrating Social BIMCloud for – (1) construction supply chain (CSC), (2) green building design, and (3) construction site layout planning. For CSC integration, an ontology based web service framework is presented. Ontologies incorporate data semantics in the information exchanged. Therefore, the information exchanging parties, i.e. software applications in the case of automatic information exchange, comprehend the meaning of the information and therefore facilitate smooth flow of heterogeneous information. Two example ontologies have developed by studying the CSC and those ontologies have been used to enrich the data model of Social BIMCloud for accommodating and supporting CSC integration. Popular energy simulation software were studied to design and extend the schema of Social BIMCloud in order to integrate it with standard simulation and analysis engines through a web service based framework. Social BIMCloud has also been extended for managing construction logistics by integrating it with a construction site layout planning (CSLP) engine. For this integration, the data model of Social BIMCloud has been extended for construction schedule information like activity start date, end date and the relation of each activity with one or more building elements and the vice versa. Finally this thesis discusses the scope of future extensions and improvements on Social BIMCloud for facilitating smooth flow of information in the construction industry. |
N.A. |
HKUST | Automated Optimization and Clash Resolution of Steel Reinforcement in RC Frames Using Building Information Modeling and Hybrid Genetic Algorithm | Thesis | 08/2017 | Mohit MANGAL | Reinforced concrete (RC) is widely used in building construction. Steel reinforcement design for RC frames is a necessary and important task for designing RC building structures. Currently, steel reinforcement design is performed manually or semi-automatically with the aid of computer software. These methods are error-prone, time-consuming, and sometimes resulting in over-design or under-design. In addition, clashes of steel reinforcement bars are rarely considered during the design stage and they often occur in beam-column joints on site nowadays. Additional time and manpower are often needed to resolve these clashes in an ad-hoc manner. Sometimes, it is impossible to resolve clashes without moving the steel reinforcement bars and redesigning steel reinforcement layout. Therefore, this research aims to develop a framework for automating the steel reinforcement design process for RC frames using the building information modelling (BIM) technology. BIM has been increasingly popular in the architecture, engineering and construction (AEC) industry for some years, but its use in structural design is still limited to extracting construction design and clash detection. However, BIM models provide much geometric and functional information and can be used for steel reinforcement optimization and clash resolution as well. This research presents an automated steel reinforcement optimization framework with modified version (considering clash resolution) based on the BIM technology. The first framework uses information from a BIM model to intelligently suggest the number, size and arrangement of three types of steel reinforcement (i.e., tensile, compressive, and shear) with minimum steel reinforcement area. The framework uses the developed hybrid Genetic Algorithm-Hooke and Jeeves (GA-HJ) approach to optimize the steel reinforcement according to the loading conditions, end-support conditions and geometry of the RC member (RC beam or RC column). The developed GA-HJ approach increases the efficiency as well as the quality of the optimum solutions. The modified version of the framework is then developed to utilize and integrate the 3D spatial information of RC frame from a BIM model to provide clash-free and optimized steel reinforcement design. The modified framework uses a two-stage GA approach to provide clash-free, optimized, constructable, and design code compliant steel reinforcement design. Overall, the developed frameworks provide fast and error-free steel reinforcement design with the minimum area of steel reinforcement when compared with currently available steel reinforcement design approaches. In addition, the developed GA-HJ approach can be modified and used to support other building design optimization problems in future. |
N.A. |
HKUST | BIM-based Automatic Generation of Fabrication Drawings for Building Facades | Thesis | 08/2018 | Min DENG | Many modern commercial buildings involve complex shaped façades, resulting in increasing complexity as well as challenges in façade fabrication and assembly processes. Currently, fabrication drawings are essential for fabrication, design evaluation and inspection of building components. Computer-aided automation, which can significantly improve the efficiency and accuracy of the fabrication and assembly process, is thus essential for the generation of façade fabrication drawings, thereby supporting the fabrication and assembly of the building façade components. Among current computer-aided technologies, building information modeling (BIM) has been widely applied to many sophisticated building projects due to its comprehensive ability in digital representation of building models. BIM has demonstrated its advantages over generating different types of drawings. However, generating fabrication drawings for façade panels using conventional approaches is time-consuming and error prone, especially when the number of façade components become huge. Therefore, this thesis aims to develop BIM-based methodologies to automate the generation of fabrication drawings for façade components, thereby facilitating the whole construction process. For façade panels, a BIM-based framework is proposed for the automatic generation of fabrication drawings for façade panels. The framework integrates both graphical and non-graphical information from BIM models and other external data sources. Specific algorithms are applied to automatically generate the graphical information on the drawing templates based on the BIM geometric models. Title blocks of the drawing templates are also automatically filled in with corresponding non-graphical information. Complete fabrication drawings as well as a tabulated file with essential graphical information on similar components are then generated automatically. For structural components such as mullions and transoms, it is important to represent their physical characteristics clearly, thus a large number of section views need to be produced, which is a time-consuming process and very labor intensive. Therefore, automatic generation of fabrication drawings for building façade components (such as mullions and transoms) is of paramount importance. In this thesis, attempts have been made to develop an efficient framework in order to automatically generate fabrication drawings for building façade structural components, including mullions and transoms. To represent the complex physical characteristics (such as holes and notches) on mullions and transoms using minimum number of drawing views, a computational algorithm based on graph theory is developed to eliminate duplicated section views. Another methodology regarding the generation of breaks for front views is also proposed to further improve the quality of drawing layouts. The obtained drawing views are then automatically arranged using a developed approach. In addition, primary dimensions of the drawing views focusing on the physical features are also generated. Furthermore, in order to maintain the consistency of the drawing formats, a methodology is proposed to simulate the scales of the drawings by using clustering technique. With the adoption of the proposed BIM-based methodologies, time and human effort in the generation of fabrication drawings for façade components can be significantly reduced, and all the fabrication drawings for similar components will follow a consistent drawing format with explicit layout, thereby enhancing their readability. |
N.A. |
HKUST | Automated optimization of steel reinforcement in RC building frames using building information modeling and hybrid genetic algorithm | Journal | 02/2018 | Mangal, M., and Cheng, J.C.P. | Design of steel reinforcement is an important and necessary task for designing reinforced concrete (RC) building structures. Currently, steel reinforcement design is performed manually or semi-automatically using computer software such as ETABS, with reference to building codes. These approaches are time consuming and sometimes error-prone. Recent advances in building information modeling (BIM) technology allow digital 3D BIM models to be leveraged for supporting different types of engineering analyses such as structural engineering design. With the aid of BIM technology, steel reinforcement design could be automated for fast, economical and error-free procedures. This paper presents a BIM-based framework using the developed three-stage hybrid genetic algorithm (GA) for automated optimization of steel reinforcement in RC frames. The methodology framework determines the selection and alignment of steel reinforcement bars in an RC building frame for the minimum steel reinforcement area, considering longitudinal tensile, longitudinal compressive and shear steel reinforcement. The first two stages optimize the longitudinal tensile and longitudinal compressive steel reinforcement while the third stage optimizes the shear steel reinforcement. International design code (BS8110) and buildability constraints are considered in the developed optimization framework. A BIM model in Industry Foundation Classes (IFC) is then automatically created to visualize the optimized steel reinforcement design results in 3D thereby facilitating design communication and generation of construction detailing drawings. A three-storey RC building frame is analyzed to check the applicability of the developed framework and its improvement over current design approaches. The results show that the developed methodology framework can minimize the steel reinforcement area quickly and accurately. | Link |
HKUST | Optimization of Occupant Thermal Comfort and Energy Consumption in HVAC Systems Using a BIM-Supported Computational Approach | FYP | 06/2019 | LUK, Tsz Hin SIU, Chun Fai |
This project aims to analyse thermal comfort and indoor air quality (IAQ) in a lecture theatre where the HVAC system consists of a Variable Air Volume (VAV) system, Displacement Ventilation (DV) system, and Demand Control Ventilation (DCV) system. Based on the simulation result, a strategy is proposed to minimize electricity consumption while maintaining sufficient thermal comfort and indoor air quality to the occupant. The analysis is conducted using Building Information Modelling (BIM), Computational Fluid Dynamics (CFD) software, and energy simulation software to simulate the airflow, temperature, CO2 concentration and energy consumption in different scenarios. Thermal comfort and IAQ are evaluated by comparing the simulated result to the international standards and local guidelines such as ASHRAE and HKIAQ. Autodesk CFD, Revit, eQUEST and EnergyPlus are used for the simulations in this project. The simulation result shows that ventilation at the back of the lecture theatre is poor even though the air handling units run in full capacity. This project has found that changing the location of the inlet of supply air duct can significantly improve the ventilation at the back without increasing the electricity consumption. CFD simulation shows that even in 100% occupancy, the lecture theatre after modification fulfils the requirement of an excellent class according to HKIAQ’s objective. |
N.A. |
HKUST | Developing a Building Information Modeling Framework for Facility Management | FYP | 06/2017 | LUK, Ka Yui TING, Hok Lam |
The sustainability of an infrastructure is of paramount importance to protect the benefits of both clients, engineers and its end-users. Building Information Modelling (BIM) therefore has become a vital tool for facility management (FM) to monitor the lifecycle of all building elements. Numerous of frameworks in the industry, however, are unable to locate and trace the asset information details of the building elements automatically for the asset management(AM) in the building lifecycle, especially the operation and maintenance stage. These existing frameworks highly rely on facility managers to locate the building elements and filter the information from a humongous database and carry out further data analysis for asset management strategies plan. Therefore, developing an integrated BIM framework to integrate the use of Radio Frequency Identification (RFID) technology and a FM software is essential for a more advanced facility management, especially the asset management performance of an infrastructure. In this research, AM is focused and a BIM model of the HKUST library is established as our targeted infrastructure for framework scenario establishment. Numbers of RFID tags have been installed on various library assets to collect respective RFID elements data. A Structured Query Language (SQL) database has been created to store in MySQL and integrate the data of the RFID tags with a FM software, Archibus. A RFID Asset Management website has been established to filter and visualize the required data. Finally, a BIM-based framework for asset management has been attained. The research framework has been applied to a HKUST Library-based AM scenario and the results have proved its AM functions and reliability in enhancing the AM performance of an infrastructure. |
N.A. |