FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Automatic Generation of BIM Models Based on Photogrammetry and Laser Scanning Point Cloud Data FYP 06/2019 LEUNG, Chi Ching
SONG, Changhao
As-built drawings are essential to provide information about the most updated configuration of a facility or a structure for project delivery and facility management. Yet, it is stated that approximately 55% of the as-built drawings was found mismatching with the updated configuration of the building, incurring an additional cost of $4.8 billion for verification of the as-built drawings. This paper aims to develop a more advanced method towards automated generation of BIM model using point cloud data from laser scanning based on that developed previously by our research team, reducing labour, cost and time consumed in modelling processes. Geometry information extraction was conducted to each category of the point cloud data with the aim to obtain parameters for automated parametric modelling using Dynamo command networks. The proposed approach was validated by successfully generating as-built Revit models for 3 different sites. N.A.
HKUST Automatic generation of fabrication drawings for facade mullions and transoms through BIM models Journal 07/2019 Deng, M., Gan, V.J.L., Singh, J., Joneja, A., and Cheng, J.C.P. Fabrication drawings are essential for manufacturing, design evaluation and inspection of building components, especially for building façade structural components. In order to clearly represent the physical characteristics of the façade structural components, a large number of section views need to be produced, which is very time-consuming and labor intensive. Therefore, automatic generation of fabrication drawings for building façade components (such as mullions and transoms) is of paramount importance. In this paper, attempts have been made to develop an efficient framework in order to automatically generate fabrication drawings for building façade structural components, including mullions and transoms. To represent the complex physical characteristics (such as holes and notches) on mullions and transoms using minimum number of drawing views, a computational algorithm based on graph theory is developed to eliminate duplicated section views. Another methodology regarding the generation of breaks for top views is also proposed to further improve the quality of drawing layouts. The obtained drawing views are then automatically arranged using a developed approach. In addition, primary dimensions of the drawing views focusing on the physical features are also generated. Furthermore, in order to maintain the consistency of drawing formats across multiple drawings, a methodology is proposed to determine the scaling factors of the drawings by using clustering technique. In an illustrative example, the proposed framework is used to generate the fabrication drawings for a typical BIM model containing façade structural components, and saving in time is observed. Link
HKUST Automatic transformation of different levels of detail in 3D GIS city models in CityGML Journal 07/2015 Deng, Y., and Cheng, J.C.P. 3D Geographic Information System (GIS) models are increasingly used for planning and analyses on a city level. Defining 3D GIS city models in different levels of detail (LoD) is often needed to browse and handle large models more efficiently. In this paper, a methodology framework for automatic transformation of different LoDs in CityGML is presented and illustrated. A new exterior shell extraction algorithm was developed from the Ray Tracing algorithm for classifying building surfaces as interior or exterior. A transformation framework among each LoD was developed based on the new exterior shell extraction algorithm. The transformation framework also includes an additional LoD called LoD3.5 that the authors proposed in this paper. The new LoD can satisfy the needs of applications which require information about interior rooms while maintaining a small data storage. The results show that the new exterior shell extraction algorithm can help achieve an automatic derivation of LoDs in CityGML. Link
HKUST BIM Application for Construction and Demolition Waste Minimization Report 06/2015 TAO Jiali Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste production. Many countries have taken initiatives to reduce the construction and demolition waste. However, the current approaches, techniques and tools focus on separate projects onsite and limited effort is invested to put attention on pre-construction waste generation related to supply chain management issues and procurement, design and tender stages.

Therefore this study aims to develop the BIM-based approaches for C&D waste in the aspect of waste estimation, 3R, prefabrication and clash detection. Besides, this study will also demonstrate and validate the developed approaches for C&D waste minimization using example scenarios. All in all, the application of BIM in C&D waste minimization can be better realized. C&D Waste estimation via the quantity takeoff tool and waste index can clearly show the accurate amount of the waste before the commencement of the works. Classifying the different construction material in BIM model and set up suitable C&D waste management planning definitely improve the efficiency of the waste management. Providing accurate information of precast units ahead of time and assisting the supply chain management can be achieved in BIM model. Visual clash detection reduces rework to some extent.
N.A.
HKUST BIM Model Reconstruction and Checking Using 3D Laser Scanning and Machine Learning Techniques Report 06/2020 LEI Ian Wang
IEONG Kuan Pui
In this project, the semantic segmentation performance of the deep learning model PointNet on Mechanical, electrical and Plumbing (MEP) is studied. Then, data of different similarity is used to test the model and the experiment of the mechanism of PointNet is conduct. Moreover, this project aims to evaluate the feasibility of generating a generalized model for semantic segmentation of MEP based on our own MEP point cloud data. On the other hand, the data preprocessing procedure is introduced. Finally, discussion about the result and conclusion are made. N.A.
HKUST BIM-based Automatic Generation of Fabrication Drawings for Building Facades Thesis 08/2018 Min DENG Many modern commercial buildings involve complex shaped façades, resulting in increasing complexity as well as challenges in façade fabrication and assembly processes. Currently, fabrication drawings are essential for fabrication, design evaluation and inspection of building components. Computer-aided automation, which can significantly improve the efficiency and accuracy of the fabrication and assembly process, is thus essential for the generation of façade fabrication drawings, thereby supporting the fabrication and assembly of the building façade components. Among current computer-aided technologies, building information modeling (BIM) has been widely applied to many sophisticated building projects due to its comprehensive ability in digital representation of building models. BIM has demonstrated its advantages over generating different types of drawings. However, generating fabrication drawings for façade panels using conventional approaches is time-consuming and error prone, especially when the number of façade components become huge. Therefore, this thesis aims to develop BIM-based methodologies to automate the generation of fabrication drawings for façade components, thereby facilitating the whole construction process.

For façade panels, a BIM-based framework is proposed for the automatic generation of fabrication drawings for façade panels. The framework integrates both graphical and non-graphical information from BIM models and other external data sources. Specific algorithms are applied to automatically generate the graphical information on the drawing templates based on the BIM geometric models. Title blocks of the drawing templates are also automatically filled in with corresponding non-graphical information. Complete fabrication drawings as well as a tabulated file with essential graphical information on similar components are then generated automatically.

For structural components such as mullions and transoms, it is important to represent their physical characteristics clearly, thus a large number of section views need to be produced, which is a time-consuming process and very labor intensive. Therefore, automatic generation of fabrication drawings for building façade components (such as mullions and transoms) is of paramount importance. In this thesis, attempts have been made to develop an efficient framework in order to automatically generate fabrication drawings for building façade structural components, including mullions and transoms. To represent the complex physical characteristics (such as holes and notches) on mullions and transoms using minimum number of drawing views, a computational algorithm based on graph theory is developed to eliminate duplicated section views. Another methodology regarding the generation of breaks for front views is also proposed to further improve the quality of drawing layouts. The obtained drawing views are then automatically arranged using a developed approach. In addition, primary dimensions of the drawing views focusing on the physical features are also generated. Furthermore, in order to maintain the consistency of the drawing formats, a methodology is proposed to simulate the scales of the drawings by using clustering technique.

With the adoption of the proposed BIM-based methodologies, time and human effort in the generation of fabrication drawings for façade components can be significantly reduced, and all the fabrication drawings for similar components will follow a consistent drawing format with explicit layout, thereby enhancing their readability.
N.A.