FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Automatic generation of fabrication drawings for facade mullions and transoms through BIM models Journal 07/2019 Deng, M., Gan, V.J.L., Singh, J., Joneja, A., and Cheng, J.C.P. Fabrication drawings are essential for manufacturing, design evaluation and inspection of building components, especially for building façade structural components. In order to clearly represent the physical characteristics of the façade structural components, a large number of section views need to be produced, which is very time-consuming and labor intensive. Therefore, automatic generation of fabrication drawings for building façade components (such as mullions and transoms) is of paramount importance. In this paper, attempts have been made to develop an efficient framework in order to automatically generate fabrication drawings for building façade structural components, including mullions and transoms. To represent the complex physical characteristics (such as holes and notches) on mullions and transoms using minimum number of drawing views, a computational algorithm based on graph theory is developed to eliminate duplicated section views. Another methodology regarding the generation of breaks for top views is also proposed to further improve the quality of drawing layouts. The obtained drawing views are then automatically arranged using a developed approach. In addition, primary dimensions of the drawing views focusing on the physical features are also generated. Furthermore, in order to maintain the consistency of drawing formats across multiple drawings, a methodology is proposed to determine the scaling factors of the drawings by using clustering technique. In an illustrative example, the proposed framework is used to generate the fabrication drawings for a typical BIM model containing façade structural components, and saving in time is observed. Link
HKUST Automatic transformation of different levels of detail in 3D GIS city models in CityGML Journal 07/2015 Deng, Y., and Cheng, J.C.P. 3D Geographic Information System (GIS) models are increasingly used for planning and analyses on a city level. Defining 3D GIS city models in different levels of detail (LoD) is often needed to browse and handle large models more efficiently. In this paper, a methodology framework for automatic transformation of different LoDs in CityGML is presented and illustrated. A new exterior shell extraction algorithm was developed from the Ray Tracing algorithm for classifying building surfaces as interior or exterior. A transformation framework among each LoD was developed based on the new exterior shell extraction algorithm. The transformation framework also includes an additional LoD called LoD3.5 that the authors proposed in this paper. The new LoD can satisfy the needs of applications which require information about interior rooms while maintaining a small data storage. The results show that the new exterior shell extraction algorithm can help achieve an automatic derivation of LoDs in CityGML. Link
HKUST Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison Journal 04/2016 Deng, Y., Cheng, J.C.P., and Anumba, C.J. The Building Information Modeling (BIM) domain and the Geographic Information System (GIS) domain share a mutual need for information from each other. Information from GIS can facilitate BIM applications such as site selection and onsite material layout, while BIM models could help generate detailed models in GIS and achieve better utility management. The mapping between the key schemas in the BIM domain and the GIS domain is the most critical step towards interoperability between the two domains. In this study, Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) were chosen as the key schemas due to their wide applications in the BIM domain and the GIS domain, respectively. We used an instance-based method to generate the mapping rules between IFC and CityGML based on the inspection of entities representing the same component in the same model. It ensures accurate mapping between the two schemas. The transformation of coordinate systems and geometry are two major issues addressed in the instance-based method. Considering the difference in schema structure and information richness between the two schemas, a reference ontology called Semantic City Model was developed and an instance-based method was adopted. The Semantic City Model captures all the relevant information from BIM models and GIS models during the mapping process. Since CityGML is defined in five levels of detail (LoD), the harmonization among LoDs in CityGML was also developed in order to complete the mapping. The test results show that the developed framework can achieve automatic data mapping between IFC and CityGML in different LoDs. Furthermore, the developed Semantic City Model is extensible and can be the basis for other schema mappings between the BIM domain and the GIS domain. Link
HKUST A framework for 3D traffic noise mapping using data from BIM and GIS integration Journal 01/2016 Deng, Y., Cheng, J.C.P., and Anumba, C.J. Traffic noise is a major health concern for people living in urban environments. Noise mapping can help evaluating the noise level for certain areas in a city. Traditionally, noise mapping is performed in 2D geographic information system (GIS). The use of 3D GIS is also emerging in noise mapping in recent years. However, the current noise-mapping platforms can only conduct noise evaluation for the outdoor environment and the indoor environment separately. In addition, related information about absorption coefficient and transmission loss (TL) in noise calculation is not properly retrieved and is often replaced with a single value. In this research, building information modelling (BIM) and 3D GIS are integrated in order to combine traffic noise evaluation in both outdoor environments and indoor environments in a single platform. In our developed BIM–GIS integration platform, the built environment is represented in a 3D GIS model that contains information at a high level of detail from BIM. With the integration with BIM, the 3D GIS model now has access to detailed indoor features such as interior walls and interior rooms. Noise evaluation could therefore be performed at a room level in the developed platform. Essential parameters such as absorption coefficient and TL can be extracted directly from BIM for noise calculation. The 3D GIS model is connected with detailed BIM so that any changes in the indoor and outdoor features can be reflected to each other. The Italian C.N.R model is modified and applied in the platform to conduct noise calculation. This paper presents the details for the development of the noise-mapping BIM–GIS platform based on ArcGIS. Two use cases were analysed to show the role of such platform in the decision-making process of both urban planning and interior design. Link
HKUST Integrating 4D BIM and GIS for construction supply chain management Journal 02/2019 Deng, Y., Gan, V.J.L., Das, M., Cheng, J.C.P., and Anumba, C.J. Construction supply chain management (CSCM) requires the tracking of material logistics and construction activities, an integrated platform, and certain coordination mechanisms among CSCM participants. Researchers have suggested the use of building information modeling (BIM) technology to monitor construction activities and manage construction supply chains. However, because material warehousing and deliveries are mostly performed outside construction project sites, project information from a single BIM model is insufficient in meeting the needs of construction supply chain management. In this research, an integrated framework was developed based on four-dimensional (4D) BIM and a geographical information system (GIS) for coordination of construction supply chains between the construction project sites and other project related locations, such as supplier sites and material consolidation centers. The proposed integration was used to solve three common tasks in CSCM, namely (1) supplier selection, (2) determination of number of material deliveries, and (3) allocation of consolidation centers, using information from 4D BIM and GIS. The proposed 4D BIM-GIS framework was demonstrated via case studies. The results of the case studies indicated that determinations of supplier and number of deliveries need to take into account both the transportation distance and material unit price. Mathematical solutions were also generated to support decision making for the allocation of consolidation centers in congested regions with long transportation distances. The outcomes of this paper serve as a decision support base for a more efficient CSCM in the future. Link
HKUST Mapping of 3D GIS Digital Building Models in CityGML Across Levels of Details (LoD) Report 06/2013 DU Qianru GIS, a traditional technology used in many fields in the past hundreds years, now develops to a new height. With the fast development of 3D GIS technology, many new data formats established based on this kind of technology. Being a new format, CityGML is mainly used to represent the city models. It is really convenient due to the fact that different levels of detail exist in this kind of model format. Different LoDs have different attributes and used in diverse situations. Now, the models are often built in different LoDs. Therefore, to achieve one model which is in different LoDs, a translator needs to be published. However, until now neither OGC standard nor previous researchers provide an efficient translator for the transformation between different LoDs. Furthermore, the detailed definition for different LoDs was not provided either.

Based on these motivations, this project decided to focus on these two goals. The first part of this project focuses on the differences among different LoDs. Based on the differences, a translator is published and its methodology is also shown in the later part of this report. By using the translator established according to the method in this report, a 3D model sample is provided at the end of the report. This project not only provides a tool to realize the translation between different LoDs, but also offers a convenient method for further research.
N.A.