FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Developing an evacuation evaluation model for offshore oil and gas platforms using BIM and agent-based model Journal 02/2018 Cheng, J.C.P., Tan, Y., Song, Y., Mei, Z., Gan, V.J.L., and Wang, X. Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering the demanding environment where such platforms are located and the complicated topsides structure that the platforms have. Conducting evacuation planning on OOGPs is challenging. Computational tools are considered as a good way to plan evacuation by emergency simulation. However, the complex structure of OOGPs and various evacuation behaviors can weaken the advantages of computational simulation. Therefore, this study develops a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) technology and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model the simulation environment by integrating matrix model and network model. In addition to essential attributes, environment sensing and dynamic escape path planning functions are developed and assigned to agents in order to improve simulation performance. Total evacuation time for all agents on an offshore platform is used to evaluate the evacuation performance of each simulation. An example OOGP BIM topsides with different emergency scenarios is used to illustrate the developed evacuation evaluation model. The results show that the developed model can accurately simulate evacuation and improve evacuation performance on OOGPs. The developed model is also applicable to other industries such as the architecture, engineering, and construction industry, where there is an increasing demand for evacuation planning and simulation. Link
HKUST Risk Management in BIM Projects Report 06/2019 CHEUNG Kai Sum Hudson
Shane Syen Ee KOK
Building Information Modeling (BIM) is claimed to be as the future trend of the Architectural, Engineering and Construction (AEC) industry and a way to address the issues of AEC. A BIM model can be adopted in different stages of project’s life circle and result in better quality, but less time and cost consumed. Although quality, cost and time are improved by adopting BIM, risk is one of the critical problems in the adoption of BIM. This study is based on conducted surveys and literature research. In this study, risk factors related to BIM adoption were identified and prioritized based on the results of a questionnaire survey distributed to architects, engineering consultants, academics, and construction companies in the AEC industry, followed by a series of discussion on the major risk factors to provide better understanding. The sources were analyzed and used to explain and identify the main risk of BIM related issues. 14 sub-factors of legal risk will be studied and gathered into four big divisions. N.A.
HKUST Optimization of HVAC Systems for Improved Indoor Air Quality and Occupant Thermal Comfort Using a BIM-Supported Computational Approach FYP 06/2020 CHEUNG, Hing
SO, Wai Hin
Air pollution problems are getting more serious and rapid in recent years. Its impacts affect us greatly in many aspects like climate changes, causing health problems and the consequences of increasing the economic burden. In 2016, there is an estimated 4.2 million premature deaths caused by bad air quality in the world. Instead of the long-term exposure effects, short term exposure to air pollutants such as PM10 and NOx will also be irritant to people which cause sneezing, headaches and dizziness, etc. Therefore, there is an urgent need to seek methods to alleviate the problems. However, the effects of air pollutions to the people cannot be determined simply since the amount of air pollutants will be different in different locations and time. To tackle this problem, it is suggested to analyze the data provided by the real-time estimation of people’s exposure to the air pollutants. Based on a given indoor environment with different HVAC components, the indoor air quality can be simulated by the aid of Building Information Technology (BIM) and Computational Fluid Dynamics (CFD). Hence, the simulation result can be interpreted and used for the optimization of HVAC systems for a better indoor air quality (IAQ).

This report presents the research conducted on the application of BIM to HVAC systems for optimizing the IAQ. Analysis of the application of BIM and the detailed operation of HVAC systems to explore how BIM-supported computational approach can optimize HVAC systems for improved indoor and thermal occupant comfort (Aktiengesellschaft). TAL building in Jordan was selected as the target area of this report and act as an example. The site visit of the building is conducted and its daily operation and building systems are analyzed and evaluated. After that, building of BIM model of TAL building has started. With the usage of Autodesk Computational Fluid Dynamics (CFD), we tried to simulate the actual indoor environment of TAL building. Before running the simulation, the calculating of different boundary conditions of the model and the construction of BIM model in CFD are conducted. The process of them will be described in this report. After reporting the progress, the result of simulation will be shown and further analysis and evaluation will be conducted through the interpretation of the simulation results.
N.A.
HKUST Developing an BIM and Augmented Reality-based Framework for Construction Monitoring and Facility Management FYP 06/2018 CHIU, San Fung
KWOK, Wai Shing
Augmented reality (AR) is an innovative technology, which allows the real-world environment to be augmented by virtual information. In construction industry, the mobile accessibility of building information through building information modelling (BIM) is still limited, a practical AR system with the integration of building information modelling (BIM) to realize real-time collaboration is yet to be developed. In addressing this gap, this project developed an integrated Augmented Reality (AR) and Building Information Modeling (BIM) framework to achieve the real-time collaboration in construction monitoring and facility management. The function of the developed framework is shown in two scenarios about pipe repairing tutorial and real-time collaboration on remoting computer and mobile device. N.A.
HKU The Empirical Study of the Challenges and Barriers of Adoption of Building Information Model (BIM) in Architecture, Engineering and Construction (AEC) Industry in Hong Kong Thesis 04/2013 CHUNG Man Sheung -- N.A.
HKUST Social BIMCloud: A distributed cloud-based BIM platform for object-based lifecycle information exchange Journal 03/2015 Das, M., Cheng, J.C.P., and Kumar, S. Background
The architecture, engineering and construction (AEC) industry lacks a framework for capturing, managing, and exchanging project, product, and social information over the lifecycle of a building. The current tools have various limitations, such as lack of interoperability, slow to transfer huge building model files, and possibility of data inconsistency.

Methods
In this paper, we present a cloud-based BIM server framework namely Social BIMCloud that facilitates BIM information exchange through dynamic merging and splitting of building models. The data model of Social BIMCloud is based on but not limited to IFC. The data model of Social BIMCloud was further extended to accommodate social interactions, by studying the formal modes of communication in the AEC industry. An object-based approach to capture and manage social interactions in AEC projects through a BIM-based visual user interface was also developed and demonstrated.

Results
Social BIMCloud addresses the issues of inefficient data transfer speed and data inconsistency in a distributed environment by facilitating the storage and partial exchange of integrated nD BIM models. Data interoperability is facilitated through open BIM standards such as IFC and direct integration with construction software. High performance, scalability, fault tolerance, and cost effectiveness are facilitated through data partitioning, data replication strategies, multi-node structures, and pay-per-use tariff systems, respectively, through a cloud-based NoSQL database.

Conclusion
The Social BIMCloud framework helps to develop and exchange BIM models, which are rich in project information such as social interactions, cost, and energy analyses. This framework improves the communication efficiency between project participants, leading to better designs and less rework. The information captured by this framework could also be useful to determine important metrics such as industry trends, relationships among project participants, and user requirements.
Link