FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Analysis and Evaluation of Indoor Ventilation and Energy Consumption Using Building Information Modeling Report 06/2017 SONG Wenyi
Qiushi WANG
This project used Building Information Modeling (BIM) and BIM compatible software, Computational Fluid Dynamic (CFD), to analyze the indoor environmental quality of the current UG Hall VII building in HKUST under mechanical and natural ventilation. The results obtained from the software analysis were used for evaluating the indoor environment with green building standard BEAM Plus EB Ver. 2 Selective Scheme. Indoor environmental quality analysis and energy analysis on different air-conditioner usage scenarios and modified air-conditioning system were also conducted to investigate whether any modifications could give rise to the indoor environment that able to reach BEAM Plus standard while reducing energy consumption. We founded that turning on one air-conditioner in only one bedroom in a suite could achieve favourable indoor environment while reducing half of the energy usage on cooling. Also, changing the air-conditioning system from window-type air-conditioners to centralized system could also lower energy consumption on cooling while keeping a comfortable indoor environment. N.A.
HKUST Integrating BIM and Internet of Things for Building Facility Management and Energy Management Report 06/2019 Yaoming HU
Bonan Zhang
This project studies sensor location determination in a complex conference room as a part of Smart HVAC system. It describes the background of HVAC system and how the system can be upgraded as a smart system, automated system, to save energy. The project mainly studies the methodology and uses some factors in IAQ, indoor air quality, to illustrate possible locations for sensor placement. In this project, Autodesk Revit is used to build a BIM model of a conference room. The building of BIM of the room is important since it will reflect the true structural setup of the room. Autodesk CFD is then introduced to run simulations. For CFD simulation, materials and boundary conditions are applied to the model in order to run simulations that can reflect distribution as realistic as possible. In the CFD simulations, some major IAQ factors such as, temperature, air velocity, thermal comfort, CO2, VOC (formaldehyde) and dust (PM 2.5) are predicted in the environment. To analyze the temperature distribution, different numbers of people are introduced to examine the difference of heat distribution due to number of people. Pollutants are examined using assumed values according to average emission values. The goal is not to determine whether or not the room is polluted but the distribution of pollutants inside the room. Eventually, the results of all simulations are collected and analyzed to determine the areas with high density of heat, pollutants where those high concentration areas are the prior locations sensors have to monitor. It is concluded that the simulation of air movement, heat, pollutant distribution, etc. is useful methodology to determine sensor locations. With the sensor placed in correct locations, HVAC system can run with higher efficiency and prevent hazardous environment. N.A.
HKUST Developing an Integrated Location-based Collaborative Building Information Modeling Framework for Building Facility Management FYP 06/2018 LEUNG, Tsz Fung
MAN, Tsz Lok
This project reviews some of the existing Indoor positioning system (IPS) and finds that Wi-Fi would be a suitable choice to be incorporated with Building Information Modelling (BIM) for the purpose of facility management. Indoor localization and finding of the shortest path are two major aspects which could combine with facility management and this project is going to investigate into them.

As Wi-Fi positioning is controlled by some factors like k-means clustering and the number of fingerprints, an experiment was conducted to see how these factors would affect the accuracy of indoor localization. The result would be discussed also. In an experiment of finding the shortest path, visibility graph and Dijkstra algorithm are two techniques used for path-generation and path-finding respectively. They would be written as codes and implemented into a mobile App. The App would be the product to test the above experiments and East Point City, which is a shopping mall, would be the chosen for the field test.

The simulation of the interaction between building management system and pathfinding system android devices was carried out successfully, which reveals the high possibility of the application of BIM on indoor navigation system for the purpose of facility management, which could potential enhance human productivity.
N.A.
HKUST Optimization of Occupant Thermal Comfort and Energy Consumption in HVAC Systems Using a BIM-Supported Computational Approach FYP 06/2019 LUK, Tsz Hin
SIU, Chun Fai
This project aims to analyse thermal comfort and indoor air quality (IAQ) in a lecture theatre where the HVAC system consists of a Variable Air Volume (VAV) system, Displacement Ventilation (DV) system, and Demand Control Ventilation (DCV) system. Based on the simulation result, a strategy is proposed to minimize electricity consumption while maintaining sufficient thermal comfort and indoor air quality to the occupant.

The analysis is conducted using Building Information Modelling (BIM), Computational Fluid Dynamics (CFD) software, and energy simulation software to simulate the airflow, temperature, CO2 concentration and energy consumption in different scenarios. Thermal comfort and IAQ are evaluated by comparing the simulated result to the international standards and local guidelines such as ASHRAE and HKIAQ. Autodesk CFD, Revit, eQUEST and EnergyPlus are used for the simulations in this project.

The simulation result shows that ventilation at the back of the lecture theatre is poor even though the air handling units run in full capacity. This project has found that changing the location of the inlet of supply air duct can significantly improve the ventilation at the back without increasing the electricity consumption. CFD simulation shows that even in 100% occupancy, the lecture theatre after modification fulfils the requirement of an excellent class according to HKIAQ’s objective.
N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2015 LO Tsz Fung
TAM, Siu-hung
There is a global trend of green buildings in recent years. The BEAM Plus green building standard developed by the Hong Kong Green Building Council (HKGBC) in 2009 has certified over 200 projects in Hong Kong. Green buildings have utilized various design features and operation technologies to reduce energy, waste and water consumption, improve indoor environmental quality and increase building performance.

Facilities Management (FM) is the total management of all services that support the core businesses of an organization in a building. Nowadays, the design and structure of buildings are getting increasingly sophisticated and the need for specialization in management and maintaining them at high quality is vital. Facility managers have to acquire, integrate, edit, and update diverse facility information ranging from building elements, data, operational costs, room allocation, contract types, to maintenance. However, FM professionals have to face challenges resulting in cost and time related to productivity, efficiency and effectiveness losses. Building Information Modeling (BIM) seeks to integrate building lifecycle, provide improvements and help to overcome such those challenges.

Thus, the aims of this project is to explore how BIM can contribute to and improve the FM profession and develop a BIM-based framework that facilitates the facility operations and management process of civil infrastructure facilities. To explore the technical feasibility of the proposed approach, It aim the Hong Kong University of Science and Technology Jockey Club Institute for Advance Study (IAS) as a target to implement and test, which is one of the world’s leading centers of research and intellectual inquiry, aiming to drive major advances and discoveries with its inter-disciplinary research locally and worldwide and establish itself as an international centre for excellence. For this purpose, the FM’s key tasks for indoor environmental quality improvement of green building features are identified and evaluated and a BIM model for the IAS building is developed and experimented by the FM tasks. As a result, such simulation helps shaping the vision, direction and policy for future energy and aviation systems.
N.A.
HKUST Analysis and Evaluation of Green Building Features Using Building Information Modeling FYP 06/2016 KEUNG, Wun Ting Iris
WONG, Wing Man
There is a global trend of green buildings in recent years. As of 2011, there are over 10,000 green building projects certified by the LEED (Leadership in Energy and Environmental Design) standard in the United States alone. In Hong Kong, the BEAM Plus green building standard developed by the Hong Kong Green Building Council (HKGBC) in 2009 has certified over 200 projects in Hong Kong. Green buildings utilize various design features and operation technologies to reduce energy and water consumption, improve indoor environmental quality and increase building performance. This project aims to study the common green building features and evaluate them using building information modeling (BIM) and computer simulation techniques. In a BIM model, each building component has its properties, information and semantics, which support sophisticated simulation and analysis under different conditions. In this project, commonly adopted energy saving and indoor environmental quality improvement green building features will be modeled, evaluated, and compared. N.A.