FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Minimization of Construction Waste through BIM-based Clash Detection and Quantification Report 06/2016 Baoshan KUANG
Pik Kei LAM
Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste generation. However, the current approaches, techniques and tools focus on separate projects on site and limited effort is invested to put attention on pre-construction waste generation related to design stages. Waste that is induced by improper design accounts for a major proportion of the total construction waste. Therefore, this report aims to develop a BIM-based approach in the aspect of waste minimization.

With the clash detection tool in Navisworks, this report demonstrates the clash classification, resolution and the corresponding waste generation of 3 pairs of general component models of a villa, which are architectural model vs. structural model, structural model vs. mechanical model and mechanical vs. plumbing model. Then, compare the result obtained with BIM and that estimated with the current waste factor approach and find out whether the BIM-based waste minimization can be better realized. Consequently, coordinating the models of each building components with clash detection enables efficient management of construction waste.
N.A.
HKUST Modeling of the indoor/outdoor exchange of air pollutants for the selected building with the aid of building information modeling technology FYP 06/2018 CHAN, Chun Tat
LUI, Kin Leung
TANG, Chloe
As with many other metropolitan cities, air pollution is an acute problem in Hong Kong; by affecting the health of its citizens, it affects the health care system and thus imposes economic burden. In 2015, air pollution led to 2,100 premature deaths and a resultant economic loss of HKD 27 billion. While people’s exposure to air pollutants differs in location and their respective activities, the critical occasions when they are exposed to the greatest amount of air pollutants remain ambiguous. Authorities have been attempting to tackle this problem by scrutinising big data to provide real-time estimations of individuals’ exposure to key air pollutants. A crucial element that enables such technology is the capability of obtaining the pollutant concentrations of different indoor-microenvironments based on the outdoor air quality. This paper reports an ongoing study on the simulation of the indoor/outdoor exchange of air pollutants with the aid of Building Information Modelling technology (BIM), followed by computational fluid dynamics simulations. The Exchange Tower in Kowloon Bay was selected as representative of a typical Hong Kong office building; its daily operation and building systems were analysed and evaluated. The results revealed that indoor environments can be described by their temperature and flow fields, which are highly related. The interdependency of these two variables means that the flow field can be derived once sufficient information on the temperature field can be gathered. This is crucial as the dispersion of air pollutants greatly depends on the characteristic of the flow field. In terms of buildings’ operation and management, a properly designed, well-mixed air distribution system was found to be effective in reducing local concentration of inert air pollutants. It was also energy efficient whilst providing comfort to the building occupants. This implies that regulations on improving building systems and monitoring the resulting indoor air quality could reduce people’s exposure to air pollutants and thereby alleviate the associated impacts and their corollaries. N.A.
HKUST Multi-zone indoor CFD under limited information: An approach coupling solar analysis and BIM for improved accuracy Journal 10/2020 Kwok, H.H.L., Cheng, J.C.P., Li, A.T.Y., Tong, J.C.K., and Lau, A.K.H. It is important to monitor the indoor air quality and thermal comfort of an office environment for the wellbeing of its occupants, and, to do so, computational fluid dynamics simulation is more cost-effective than measuring an entire floor. Computational fluid dynamics simulation has been used by previous studies for single rooms and partitioned spaces, but not for office floors with multi-zone ventilation systems, and air infiltrations between different zones through closed doors have been neglected. Also, since it is often not possible to take measurements across an entire floor due to concerns of tenant privacy, few studies have used the limited obtainable field measurements to validate multi-zone computational fluid dynamics simulations. This study describes a methodology to conduct indoor multi-zone steady-state computational fluid dynamics simulation, with improved accuracy, on a typical office floor where there is limited information on carbon dioxide concentrations and temperatures. Heat and mass conservation equations were used to compensate for the lack of information. The mechanical ventilation and air conditioning layout was considered along with the sources of heat and carbon dioxide emissions. To improve the accuracy of the simulation on temperature, a solar analysis, based on building geometry, orientation, materials, location, and weather, was conducted to estimate any solar heat gain and distribution through curtain walls. Building information modeling supported the solar analysis and provided geometric information for the computational fluid dynamics simulation. The methodology was validated by a real case of a commercial building, where the accuracy of the temperature simulation improved by 9.9%. Link
HKUST Natural-language-based intelligent retrieval engine for BIM object database Journal 03/2019 Wu, S., Shen, Q., Deng, Y., and Cheng, J.C.P. Rapid growth of building components in the BIM object database increases the difficulty of the efficient query of components that users require. Retrieval technology such as Autodesk Seek in America and BIMobject in Europe, which are widely used in BIM databases, are unable to understand what the search field truly means, causing a lack of completion and a low accuracy rate for results incapable of meeting the demands of users. To tackle such a problem, this paper puts forward a natural-language-based intelligent retrieval engine for the BIM object database and Revit modeling. First, a domain ontology is constructed for semantic understanding, and the BIM object database framework is established for testing our search engine. Second, “target keyword” and “restriction sequence” proposed are extracted from the natural sentences of users. Then, a final query is formed, combining concepts of “keyword” and “restriction sequence”, and its concepts are expanded through the semantic relationship in ontology. Finally, the results are presented after mapping from the final query to the BIM object database and ranking of results. Compared with traditional keyword-based methods, the experimental results demonstrate that our method outperforms the traditional methods. Link
HKUST Optimization of HVAC Systems for Improved Indoor Air Quality and Occupant Thermal Comfort Using a BIM-Supported Computational Approach FYP 06/2020 CHEUNG, Hing
SO, Wai Hin
Air pollution problems are getting more serious and rapid in recent years. Its impacts affect us greatly in many aspects like climate changes, causing health problems and the consequences of increasing the economic burden. In 2016, there is an estimated 4.2 million premature deaths caused by bad air quality in the world. Instead of the long-term exposure effects, short term exposure to air pollutants such as PM10 and NOx will also be irritant to people which cause sneezing, headaches and dizziness, etc. Therefore, there is an urgent need to seek methods to alleviate the problems. However, the effects of air pollutions to the people cannot be determined simply since the amount of air pollutants will be different in different locations and time. To tackle this problem, it is suggested to analyze the data provided by the real-time estimation of people’s exposure to the air pollutants. Based on a given indoor environment with different HVAC components, the indoor air quality can be simulated by the aid of Building Information Technology (BIM) and Computational Fluid Dynamics (CFD). Hence, the simulation result can be interpreted and used for the optimization of HVAC systems for a better indoor air quality (IAQ).

This report presents the research conducted on the application of BIM to HVAC systems for optimizing the IAQ. Analysis of the application of BIM and the detailed operation of HVAC systems to explore how BIM-supported computational approach can optimize HVAC systems for improved indoor and thermal occupant comfort (Aktiengesellschaft). TAL building in Jordan was selected as the target area of this report and act as an example. The site visit of the building is conducted and its daily operation and building systems are analyzed and evaluated. After that, building of BIM model of TAL building has started. With the usage of Autodesk Computational Fluid Dynamics (CFD), we tried to simulate the actual indoor environment of TAL building. Before running the simulation, the calculating of different boundary conditions of the model and the construction of BIM model in CFD are conducted. The process of them will be described in this report. After reporting the progress, the result of simulation will be shown and further analysis and evaluation will be conducted through the interpretation of the simulation results.
N.A.
HKUST Optimization of Occupant Thermal Comfort and Energy Consumption in HVAC Systems Using a BIM-Supported Computational Approach FYP 06/2019 LUK, Tsz Hin
SIU, Chun Fai
This project aims to analyse thermal comfort and indoor air quality (IAQ) in a lecture theatre where the HVAC system consists of a Variable Air Volume (VAV) system, Displacement Ventilation (DV) system, and Demand Control Ventilation (DCV) system. Based on the simulation result, a strategy is proposed to minimize electricity consumption while maintaining sufficient thermal comfort and indoor air quality to the occupant.

The analysis is conducted using Building Information Modelling (BIM), Computational Fluid Dynamics (CFD) software, and energy simulation software to simulate the airflow, temperature, CO2 concentration and energy consumption in different scenarios. Thermal comfort and IAQ are evaluated by comparing the simulated result to the international standards and local guidelines such as ASHRAE and HKIAQ. Autodesk CFD, Revit, eQUEST and EnergyPlus are used for the simulations in this project.

The simulation result shows that ventilation at the back of the lecture theatre is poor even though the air handling units run in full capacity. This project has found that changing the location of the inlet of supply air duct can significantly improve the ventilation at the back without increasing the electricity consumption. CFD simulation shows that even in 100% occupancy, the lecture theatre after modification fulfils the requirement of an excellent class according to HKIAQ’s objective.
N.A.