Resources
FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong
Institution | Title | Type | Date | Author(s) | Abstract | Link |
---|---|---|---|---|---|---|
HKUST | Creating a Connected Digital Twin of HKUST Campus for Smart Campus Facility Management | FYP | 06/2020 | FONG, Tsz Yan KONG, Yu Hin |
Experts in engineering defines BIM as a representation of a digital twin which is a virtual replica of a physical system (Marr 2017). A digital twin provides rich semantic and geometric information for facilitating construction and FM processes. Through Facility Management Systems (FMSs) and Building Management Systems (BMSs) linked with sensors, information can be garnered to support building FM. FMS or BMS is a computer-based system installed in offices or buildings ensuring that all buildings are structurally sound and serviceable. In this research, we initially plan to incorporate two common FM software, namely ArchiBUS and Maximo with the HKUST FM system for the sake of maximizing the FM effectiveness and facilitating FM process. However, we did not get either one of the licenses of both software, so it turns out that we have to use other machine learning set of tools to do predictions for our library. The specific goals were (1) to build a machine learning model to perform temperature forecasting; (2) to make suggestion on the operative temperature of AC in library to ensure thermal comfort; (3) to provide common campus FM capabilities by setting up and demonstrating tailor-made user interfaces by using Power BI. |
N.A. |
HKUST | Developing a Facility Monitoring and Management Framework for Buildings Based on BIM and Sensor Technologies | Report | 06/2016 | Fehong HE Jiaying HUANG Guishan LI |
Building Information Modeling (BIM) is a global trend which is gaining significant benefits in facility management. It can reduce cost and time to address building management problems. Currently there is little information on how to realize the benefits from BIM with monitoring the real time state of a building environment. In this thesis, a sensor based BIM framework is presented for building controlling and management. Building environment, space, equipment and safety information can be captured by unique sensors automatically instead of human detect. We have simulated the sensor installation in a popular BIM software Autodesk Revit, and use HKUST Hall 7 as an example model to perform our platform. We use SQL database to store all the sensor ID because it have a good linkage with BIM model. With the pragmatic sensor management plugin we can realize visualization interface in BIM model to management those sensors and get the specific information. After realize the real time data acquisition, we have researched some relative criteria and build an assessment system for further facility management. |
N.A. |
HKUST | Semi-automatic Generation of BIM models from Point Cloud Data for Facility Management | Report | 06/2018 | Duan Feiran Siyu SHEN |
Nowadays, BIM has transformed architecture, engineering and construction. However, the great potential of BIM is to provide accurate, timely, and relevant information not just during design and construction for a single building, but also throughout the lifecycle of an entire portfolio of facilities, such as the facility management. It has many competencies and plays an important role in the total life cycle of the building. The process of facility management need the support of lots of information which could then be provided by BIM model. Therefore, BIM model plays an important role in facility management. BIM models are usually created from designed information which is called as-designed BIM model. However, there are lots of existing buildings do not have BIM model when they are built. For new buildings, there are also many changes may occur during construction, and the as-designed models could not present the real conditions. Therefore, an as-build BIM model may be needed to help the visualize and renovation of the project. What’s more, the current method for creating BIM models are mainly concentrated on regular buildings. However, more and more architect would like to design building with irregular buildings. Therefore, a new method should be used to create BIM model for irregular buildings. This project aims to find a semi-automatic method to create BIM models for irregular building which could be applied for facility management. It takes a real project in industry as example and try to build the BIM model for a sky light bridge located in Hong Kong Airport by a combination of different software. This method firstly extracts the geometry information for each member from the point cloud data that gain from laser scanning. Then, it convert those conditions into BIM model with the help of Dynamo and Revit. |
N.A. |
HKUST | Mapping of 3D GIS Digital Building Models in CityGML Across Levels of Details (LoD) | Report | 06/2013 | DU Qianru | GIS, a traditional technology used in many fields in the past hundreds years, now develops to a new height. With the fast development of 3D GIS technology, many new data formats established based on this kind of technology. Being a new format, CityGML is mainly used to represent the city models. It is really convenient due to the fact that different levels of detail exist in this kind of model format. Different LoDs have different attributes and used in diverse situations. Now, the models are often built in different LoDs. Therefore, to achieve one model which is in different LoDs, a translator needs to be published. However, until now neither OGC standard nor previous researchers provide an efficient translator for the transformation between different LoDs. Furthermore, the detailed definition for different LoDs was not provided either. Based on these motivations, this project decided to focus on these two goals. The first part of this project focuses on the differences among different LoDs. Based on the differences, a translator is published and its methodology is also shown in the later part of this report. By using the translator established according to the method in this report, a 3D model sample is provided at the end of the report. This project not only provides a tool to realize the translation between different LoDs, but also offers a convenient method for further research. |
N.A. |
HKUST | Integrating 4D BIM and GIS for construction supply chain management | Journal | 02/2019 | Deng, Y., Gan, V.J.L., Das, M., Cheng, J.C.P., and Anumba, C.J. | Construction supply chain management (CSCM) requires the tracking of material logistics and construction activities, an integrated platform, and certain coordination mechanisms among CSCM participants. Researchers have suggested the use of building information modeling (BIM) technology to monitor construction activities and manage construction supply chains. However, because material warehousing and deliveries are mostly performed outside construction project sites, project information from a single BIM model is insufficient in meeting the needs of construction supply chain management. In this research, an integrated framework was developed based on four-dimensional (4D) BIM and a geographical information system (GIS) for coordination of construction supply chains between the construction project sites and other project related locations, such as supplier sites and material consolidation centers. The proposed integration was used to solve three common tasks in CSCM, namely (1) supplier selection, (2) determination of number of material deliveries, and (3) allocation of consolidation centers, using information from 4D BIM and GIS. The proposed 4D BIM-GIS framework was demonstrated via case studies. The results of the case studies indicated that determinations of supplier and number of deliveries need to take into account both the transportation distance and material unit price. Mathematical solutions were also generated to support decision making for the allocation of consolidation centers in congested regions with long transportation distances. The outcomes of this paper serve as a decision support base for a more efficient CSCM in the future. | Link |
HKUST | Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison | Journal | 04/2016 | Deng, Y., Cheng, J.C.P., and Anumba, C.J. | The Building Information Modeling (BIM) domain and the Geographic Information System (GIS) domain share a mutual need for information from each other. Information from GIS can facilitate BIM applications such as site selection and onsite material layout, while BIM models could help generate detailed models in GIS and achieve better utility management. The mapping between the key schemas in the BIM domain and the GIS domain is the most critical step towards interoperability between the two domains. In this study, Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) were chosen as the key schemas due to their wide applications in the BIM domain and the GIS domain, respectively. We used an instance-based method to generate the mapping rules between IFC and CityGML based on the inspection of entities representing the same component in the same model. It ensures accurate mapping between the two schemas. The transformation of coordinate systems and geometry are two major issues addressed in the instance-based method. Considering the difference in schema structure and information richness between the two schemas, a reference ontology called Semantic City Model was developed and an instance-based method was adopted. The Semantic City Model captures all the relevant information from BIM models and GIS models during the mapping process. Since CityGML is defined in five levels of detail (LoD), the harmonization among LoDs in CityGML was also developed in order to complete the mapping. The test results show that the developed framework can achieve automatic data mapping between IFC and CityGML in different LoDs. Furthermore, the developed Semantic City Model is extensible and can be the basis for other schema mappings between the BIM domain and the GIS domain. | Link |