FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Developing an Integrated Location-based Collaborative Building Information Modeling Framework for Building Facility Management FYP 06/2018 LEUNG, Tsz Fung
MAN, Tsz Lok
This project reviews some of the existing Indoor positioning system (IPS) and finds that Wi-Fi would be a suitable choice to be incorporated with Building Information Modelling (BIM) for the purpose of facility management. Indoor localization and finding of the shortest path are two major aspects which could combine with facility management and this project is going to investigate into them.

As Wi-Fi positioning is controlled by some factors like k-means clustering and the number of fingerprints, an experiment was conducted to see how these factors would affect the accuracy of indoor localization. The result would be discussed also. In an experiment of finding the shortest path, visibility graph and Dijkstra algorithm are two techniques used for path-generation and path-finding respectively. They would be written as codes and implemented into a mobile App. The App would be the product to test the above experiments and East Point City, which is a shopping mall, would be the chosen for the field test.

The simulation of the interaction between building management system and pathfinding system android devices was carried out successfully, which reveals the high possibility of the application of BIM on indoor navigation system for the purpose of facility management, which could potential enhance human productivity.
N.A.
HKUST Comparison of Building Management Systems and Integration of Sensors with BIM for Facility Management Report 06/2018 LI Weixia
Zhang Yini
In contemporary, the requirements for promoting facility management efficiency is increasing. The traditional facility management may cost too much workforce, too much energy and money. In addition, it cannot meet people’s demand of sustainable development and the requirements of offering a comfortable environment indoors.

With the rapid development of BIM and IoT technology, we would like to make use of those technology to solve this problem. In this project, based on optimizing the facility management of student residual building which located at HKUST, some superficial attempts are made. In the project, the current situation of traditional facility management and the development of BIM and Internet of Things technology are firstly studied. Then, we introduce the application of BIM and IoT technology on facility management, and its benefits as well as weakness. Then we compare some famous and widespread brands products in BMS field. Finally, this project concluded some possible improvement and some future work. Also, we describe the picture of applying this application in realistic which can show the great potential of applying BIM + IoT technology in future facility management.
N.A.
HKUST Integration of BIM and GIS for City Planning Report 06/2014 LI Zhi With the popularity of 3D digital maps for computers and mobile phones, the development of 3D city models has grown substantially in the last decades. 3D maps can not only support navigation, but also allow people to perform city planning and architectural and engineering designs with the consideration of the surrounding environment. Moreover, many other advanced applications have been studied to be equipped in 3D models, like disaster management, noise and pollutant diffusion analysis and so on. Earliest research on 3D digital city models was in 1990s and now there are about a total number of 1252 3D digital city models worldwide already.

Since the early 1990’s, lots of researchers have conducted studies in creation, application and maintenance of 3D city models. The study results indicate that the modeling construction techniques and application exploitability has improved significantly in last decades. However, the level of development of existing models varies widely in view of geographic locality (either city or country), creation time and many other factors. A standardized evaluation framework of the existing 3D city models is still in need.

Based on the purpose of setting up an evaluation framework, this review work was conducted. Mainly through literature review and searching on project websites, we collected original sources of more than 70 projects of 3D city models and 23 are chosen for detailed study and analysis. These city models are mainly categorized in four continents (North America, Europe, Asia and Oceania) and in four aspects (model coverage, modeling technology, application and maintenance).

To the point, a preliminary model estimation method is created, considering the maturity of five aspects during modeling procedures, i.e. data capturing, data processing, data storing and managing, data presenting and data updating. According to the evaluation framework, city models can be categorized into four maturity levels as 3D GIS as a Scene, 3D GIS as a Service, 3D GIS as an Infrastructure and 3D GIS as a Platform. Finally, based on the analysis results, some limitations of 3D city models in current situation are summarized, and recommendations of possible resolutions are presented correspondingly.
N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2016 LI, Kang
TANG, Chung Hin
Building information modeling (BIM) aims to facilitate information management and collaboration among stakeholders in different domains over the building facility life cycle. In a BIM model, each building component has its properties, information, and semantics. Modifications performed in one view will be reflected in all perspectives. BIM models are increasingly used in the building industry as an object-based information hub for storing, integrating and managing building information in different aspects throughout the design, construction, and maintenance operations. However, the applications of BIM for civil infrastructures are still immature and uncommon. This project aims to develop a BIM-based framework that facilitates the facility operation and management process of civil infrastructure facilities. In this project, the information requirement and facility management process will be studied and summarized. A semantic data model and system framework for infrastructure facility management will then be developed. The developed framework will finally be illustrated and validated in case scenarios. N.A.
HKUST BIM-based Daylighting and Energy Analysis on the HKUST Campus Report 06/2018 LIU, KING HB
WANG Xiaohan
William Yat Tang FUNG
With the acceleration of urbanization, the building energy consumption in China accounts for 20% of the total energy consumption, of which the depleting of residential energy accounts for 60.3%. A residential building-hall 6 in HKUST campus is chosen and energy consumption and daylighting is analyzed and optimized. After literature review and learning the advantages, disadvantages and application of different software about energy analysis, I choose some BIM-related software to conduct energy and daylight analysis and consumption, such as Autodesk Revit, eQUEST and Insight 360 based on Building Information Modeling (BIM).

For energy analysis, annual energy consumption is 795.2 mWh and half of it is space cooling.In our analysis, the illuminance levels of the building are 52% and 68% at 9 am and 3 pm respectively, which exceed the passing criteria, so daylighting of this residential building can meet the LEED requirement. The results in this project are useful for both building energy conversation and creating a comfortable living environment in future.
N.A.
HKUST A state-of-the-art review on the integration of building information modelling (BIM) and geographic information system (GIS) Journal 02/2017 Liu, X., Wang, X., Wright, G., Cheng, J.C.P., Li, X., and Liu, R. The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as “EEEF” criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration. Link