FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Minimization of Construction Waste through BIM-based Clash Detection and Quantification Report 06/2016 Baoshan KUANG
Pik Kei LAM
Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste generation. However, the current approaches, techniques and tools focus on separate projects on site and limited effort is invested to put attention on pre-construction waste generation related to design stages. Waste that is induced by improper design accounts for a major proportion of the total construction waste. Therefore, this report aims to develop a BIM-based approach in the aspect of waste minimization.

With the clash detection tool in Navisworks, this report demonstrates the clash classification, resolution and the corresponding waste generation of 3 pairs of general component models of a villa, which are architectural model vs. structural model, structural model vs. mechanical model and mechanical vs. plumbing model. Then, compare the result obtained with BIM and that estimated with the current waste factor approach and find out whether the BIM-based waste minimization can be better realized. Consequently, coordinating the models of each building components with clash detection enables efficient management of construction waste.
N.A.
HKU The Application of Historic Building Information Modeling (HBIM) in Hong Kong Thesis 04/2016 CHAN Tsz Ho -- N.A.
HKUST Modeling of the indoor/outdoor exchange of air pollutants for the selected building with the aid of building information modeling technology FYP 06/2018 CHAN, Chun Tat
LUI, Kin Leung
TANG, Chloe
As with many other metropolitan cities, air pollution is an acute problem in Hong Kong; by affecting the health of its citizens, it affects the health care system and thus imposes economic burden. In 2015, air pollution led to 2,100 premature deaths and a resultant economic loss of HKD 27 billion. While people’s exposure to air pollutants differs in location and their respective activities, the critical occasions when they are exposed to the greatest amount of air pollutants remain ambiguous. Authorities have been attempting to tackle this problem by scrutinising big data to provide real-time estimations of individuals’ exposure to key air pollutants. A crucial element that enables such technology is the capability of obtaining the pollutant concentrations of different indoor-microenvironments based on the outdoor air quality. This paper reports an ongoing study on the simulation of the indoor/outdoor exchange of air pollutants with the aid of Building Information Modelling technology (BIM), followed by computational fluid dynamics simulations. The Exchange Tower in Kowloon Bay was selected as representative of a typical Hong Kong office building; its daily operation and building systems were analysed and evaluated. The results revealed that indoor environments can be described by their temperature and flow fields, which are highly related. The interdependency of these two variables means that the flow field can be derived once sufficient information on the temperature field can be gathered. This is crucial as the dispersion of air pollutants greatly depends on the characteristic of the flow field. In terms of buildings’ operation and management, a properly designed, well-mixed air distribution system was found to be effective in reducing local concentration of inert air pollutants. It was also energy efficient whilst providing comfort to the building occupants. This implies that regulations on improving building systems and monitoring the resulting indoor air quality could reduce people’s exposure to air pollutants and thereby alleviate the associated impacts and their corollaries. N.A.
HKUST Developing a Context-Aware Building Information Modeling Framework for Construction Monitoring and Management FYP 06/2017 CHAN, Kei Yiu
LI, Chun Ting
With the global popularization of smartphones, which are equipped with various electronic sensors and hardware, the smartphones can collect useful information, such as location, light intensity, speed from the surroundings almost everywhere and anytime. The instant availability of the useful information has led to the formulation of a novel concept called context-awareness, which is developing computer programs to perform specific functions based on the acquired information. Location-awareness, which focuses only on collecting location information, is one of the future trends for building information modelling (BIM) development. The primary purpose of this project is to incorporate the idea of location-awareness to BIM in construction management and monitoring. To achieve this purpose, this project is objected to accomplish three main objectives, which are locating and analyzing the user current indoor position, acquiring and transferring the information in from BIM models to local devices and establishing the location-aware BIM framework on a viable and convenient platform. Thus, the location-aware BIM framework is developed as a mobile application named as “HKUST Library Helper”. The mobile application is not only equipped with Wi-Fi fingerprinting technology to support indoor localization, but also it is designed to provide different useful functions such as identifying rooms based on user position or by touch, extracting room information and creating and retrieving special notes and tasks for different rooms. N.A.
HKUST Integrating Building Information Modeling and Internet of Things for Building Facility Management FYP 06/2019 CHAN, Sum Chau
DWIVEDY, Sampriti
In Hong Kong’s Smart City Blueprint, promoting ‘Green and Intelligent Buildings, and Energy Efficiency’ is one of the most important initiatives. HKUST, as the leading university in Hong Kong, has been working for years to build a better, smarter and greener campus. Keeping in line with HKUST’s “Sustainable Smart Campus as a Living Lab (SSC)” initiative, this project seeks to enable the Facilities Management Office to make better decisions with respect to balancing the trade-off between human thermal comfort and energy costs. This can be done by optimizing the operational controls of the existing heating, ventilation and air-conditioning systems (HVAC) to the occupancy level of the facility. The research was divided into two case studies, one that focuses on occupancy prediction with the use of machine learning and the other seeks to demonstrate how building information modelling (BIM) and Internet of Things (IoT) can be used to visualize the tradeoff between user thermal comfort and energy costs.

This project also discusses a flowchart to integrate the various technologies being suggested. and identifies certain software tools that can be used to assist in the integration process, for instance Autodesk’s Forge. A web-based graphical user interface for an integrated smart facility management system was also constructed in order to provide a direction for future works on this topic.
N.A.
HKUST Analysis and Evaluation of Low Carbon Building Features Using Building Information Modeling FYP 06/2018 CHAN, Yin Yee
TSANG, Chun Kit
Building sector contributes to more than 30% of the global greenhouse gas emissions, which is the major source of greenhouse gas emissions. In Hong Kong, a high-rise and high-density city, about 60% of carbon emissions and 90% of energy expenditure come from buildings. Mitigating the environmental impacts caused by the building sector can be achieved by low carbon buildings. However, previous studies on carbon emissions from buildings mainly adopted manual processes and only a few studies applied computational fluid dynamics (CFD) into the analysis and calculated the carbon emissions using the CFD results. Therefore, the comparison between buildings with different features is laborious. Building information modelling (BIM) enables comprehensive and accurate analysis of low carbon building features by collaborating with various simulation systems. By incorporating CFD into the analysis and evaluation of the carbon footprint of different Hong Kong public housing standard blocks using BIM, the research of low carbon building is extended. Revit models of three common Hong Kong public housing blocks are created, and the embodied carbon is quantified by using the material schedules and the corresponding carbon emission factors of different construction materials. The operational carbon is quantified by using the energy simulation results and the CFD results. By considering the total carbon emissions throughout the life-cycle of the buildings, it is found that the harmony block has the lowest carbon emissions among studied public housing standard blocks. When considered the effect of natural ventilation, the energy consumption of the buildings can be reduced up to 17%. N.A.