Resources
FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong
Institution | Title | Type | Date | Author(s) | Abstract | Link |
---|---|---|---|---|---|---|
HKUST | A BIM-based system for demolition and renovation waste estimation and planning | Journal | 03/2013 | Cheng, J.C.P., and Ma, L.Y.H. | Due to the rising worldwide awareness of green environment, both government and contractors have to consider effective construction and demolition (C&D) waste management practices. The last two decades have witnessed the growing importance of demolition and renovation (D&R) works and the growing amount of D&R waste disposed to landfills every day, especially in developed cities like Hong Kong. Quantitative waste prediction is crucial for waste management. It can enable contractors to pinpoint critical waste generation processes and to plan waste control strategies. In addition, waste estimation could also facilitate some government waste management policies, such as the waste disposal charging scheme in Hong Kong. Currently, tools that can accurately and conveniently estimate the amount of waste from construction, renovation, and demolition projects are lacking. In the light of this research gap, this paper presents a building information modeling (BIM) based system that we have developed for estimation and planning of D&R waste. BIM allows multi-disciplinary information to be superimposed within one digital building model. Our system can extract material and volume information through the BIM model and integrate the information for detailed waste estimation and planning. Waste recycling and reuse are also considered in our system. Extracted material information can be provided to recyclers before demolition or renovation to make recycling stage more cooperative and more efficient. Pick-up truck requirements and waste disposal charging fee for different waste facilities will also be predicted through our system. The results could provide alerts to contractors ahead of time at project planning stage. This paper also presents an example scenario with a 47-floor residential building in Hong Kong to demonstrate our D&R waste estimation and planning system. As the BIM technology has been increasingly adopted in the architectural, engineering and construction industry and digital building information models will likely to be available for most buildings (including historical buildings) in the future, our system can be used in various demolition and renovation projects and be extended to facilitate project control. |
Link |
HKUST | Creating a Connected Digital Twin of HKUST Campus for Smart Campus Facility Management | FYP | 06/2020 | FONG, Tsz Yan KONG, Yu Hin |
Experts in engineering defines BIM as a representation of a digital twin which is a virtual replica of a physical system (Marr 2017). A digital twin provides rich semantic and geometric information for facilitating construction and FM processes. Through Facility Management Systems (FMSs) and Building Management Systems (BMSs) linked with sensors, information can be garnered to support building FM. FMS or BMS is a computer-based system installed in offices or buildings ensuring that all buildings are structurally sound and serviceable. In this research, we initially plan to incorporate two common FM software, namely ArchiBUS and Maximo with the HKUST FM system for the sake of maximizing the FM effectiveness and facilitating FM process. However, we did not get either one of the licenses of both software, so it turns out that we have to use other machine learning set of tools to do predictions for our library. The specific goals were (1) to build a machine learning model to perform temperature forecasting; (2) to make suggestion on the operative temperature of AC in library to ensure thermal comfort; (3) to provide common campus FM capabilities by setting up and demonstrating tailor-made user interfaces by using Power BI. |
N.A. |
HKUST | Automatic generation of fabrication drawings for facade mullions and transoms through BIM models | Journal | 07/2019 | Deng, M., Gan, V.J.L., Singh, J., Joneja, A., and Cheng, J.C.P. | Fabrication drawings are essential for manufacturing, design evaluation and inspection of building components, especially for building façade structural components. In order to clearly represent the physical characteristics of the façade structural components, a large number of section views need to be produced, which is very time-consuming and labor intensive. Therefore, automatic generation of fabrication drawings for building façade components (such as mullions and transoms) is of paramount importance. In this paper, attempts have been made to develop an efficient framework in order to automatically generate fabrication drawings for building façade structural components, including mullions and transoms. To represent the complex physical characteristics (such as holes and notches) on mullions and transoms using minimum number of drawing views, a computational algorithm based on graph theory is developed to eliminate duplicated section views. Another methodology regarding the generation of breaks for top views is also proposed to further improve the quality of drawing layouts. The obtained drawing views are then automatically arranged using a developed approach. In addition, primary dimensions of the drawing views focusing on the physical features are also generated. Furthermore, in order to maintain the consistency of drawing formats across multiple drawings, a methodology is proposed to determine the scaling factors of the drawings by using clustering technique. In an illustrative example, the proposed framework is used to generate the fabrication drawings for a typical BIM model containing façade structural components, and saving in time is observed. | Link |
HKUST | A BIM-based location aware AR collaborative framework for facility maintenance management | Journal | 07/2019 | Chen, K., Chen, W., Li, C.T., and Cheng, J.C.P. | Facility maintenance management (FMM) accounts for a large amount of the total cost of facilities’ lifecycle, illustrating the importance of improving FMM efficiency. Many mechanical facilities, like ventilation ducts above ceilings, are normally hidden, indicating the necessity of applying certain technology that can enable users to visualize and update the information of hidden facilities. Real-time location information is also needed so that users can be aware of their current location and the surrounding facility can be displayed accordingly. Therefore, this paper aims to develop location aware augmented reality (AR) framework for FMM, with building information modeling (BIM) as the data source, AR for the interaction between users and facilities, and Wi-Fi fingerprinting for providing real-time location information. The developed framework has the following features: (1) a proposed softmax-based weighted K nearest neighbour (S-WKNN) algorithm is used for Wi-Fi fingerprinting to obtain the current location of users; (2) a room identification method, based on BIM, the obtained location, and ray casting algorithm, is proposed to identify which room the user is currently in; (3) according to the obtained location and the identified room, users can visualize and interact with their surrounding facilities through the AR devices; and (4) users in a remote location can visualize site situation and interact with site facilities in real time through video streaming and the shared database. At the end of the paper, an experiment was designed to evaluate the effectiveness of the developed system. As shown by the experiment, the developed AR collaborative system can reduce the completion time of the designed task by around 65% compared with traditional 2D drawing-based method, and can provide a localization accuracy of around 1m |
Link |
HKUST | Integration of Building Information Modeling and Internet of Things for Facility Maintenance Management | Thesis | 03/2019 | Weiwei CHEN | Facility management (FM) accounts for more than two thirds of the total cost of the whole life cycle of a building. FM staff do have inadequate visualization and often have difficulty in querying information using 2D drawings and traditional facility management systems. Currently, building information modeling (BIM) is increasingly applied to FM in the operations and maintenance (O&M) stage. BIM represents the geometric and semantic information of building facilities in 3D object-based digital models and enables facility managers to manage building facilities better in the O&M stage. At the same time, the Internet of Things (IoT) technology can be used to acquire operational data of building facilities and real-time environmental data to support FM. However, few studies have used BIM and IoT technologies together for automated management and maintenance of building facilities. Around 65%~80% of the FM comes from facility maintenance management (FMM). However, there is a lack of efficient maintenance strategies and appropriate decision making approaches that can reduce FMM costs. Facility managers usually undertake reactive maintenance or preventive maintenance strategies in the O&M stage. However, reactive maintenance cannot prevent failures and preventive maintenance cannot predict the future condition of building components, which leads to maintenance actions being performed after failure has occurred and it cannot keep the functionality of a building consistent. This study aims to apply a predictive maintenance strategy with BIM and IoT technologies to overcome these limitations. In addition, there is an information interoperability problem among BIM, IoT and the FM system. Therefore, this study aims to leverage the BIM and IoT technologies to improve the efficiency of FMM and to address the information interoperability problem of integrating BIM, IoT and the FM system. In order to improve the efficiency of FMM, an FMM framework is proposed based on BIM and facility management systems (FMSs), which can provide automatic scheduling of maintenance work orders (MWOs) to enhance good decision making in FMM. In this framework, data are mapped between BIM and FMSs according to the developed Industry Foundation Classes (IFC) extension of maintenance tasks and MWO information in order to achieve data integration. Geometric and semantic information of the failure components is extracted from the BIM models in order to calculate the optimal maintenance path in the BIM environment. Moreover, the MWO schedule is automatically generated using a modified Dijkstra algorithm that considers four factors, namely, problem type, emergency level, distance among components, and location. In order to provide a better maintenance strategy for building facilities, a data-driven predictive maintenance framework based on BIM and IoT technologies for FMM has been developed. The framework consists of an information layer and an application layer. Data collection and data integration among the BIM models, FM system, and IoT system are undertaken in the information layer, while the application layer contains four modules to achieve predictive maintenance, namely: (1) condition monitoring and sensor data acquisition, (2) condition assessment module, (3) condition prediction module, and (4) maintenance planning module. In addition, machine learning algorithms, i.e. artificial neural network (ANN) and support vector machine (SVM), are used to predict the future condition of building components. For the information interoperability problem among BIM, IoT and FM system, an ontology-based methodology framework is proposed for data integration among the BIM, IoT and FM domains. The ontology-based approach is developed as a tool to facilitate knowledge management in BIM- and IoT-based FMM and improve the data integration process. First, three ontologies are developed for BIM, IoT, and FMM respectively according to the ontology development process and facility information requirement. Second, an ontology mapping method is designed to integrate the three developed ontologies based on mapping rules. Moreover, ontology reasoning rules are developed based on description logics to infer implicit facts from the integrated ontology and support quick information querying on FMM. The developed framework is validated through an illustrative example. This research provides an automatic work order scheduling approach in FMM and predictive maintenance strategy for building facilities, thereby enabling great saving in time and labor costs for facility staff. In addition, the proposed ontology-based methodology can address the information interoperability problem and integrate data from BIM, IoT and FM system for facility maintenance activities. In the future, the ontology-based methodology will be applied for the operation management of building facilities. |
N.A. |
HKUST | Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms | Journal | 01/2020 | Cheng, J.C.P., Chen, W., Chen, K., and Wang, Q. | Facility managers usually conduct reactive maintenance or preventive maintenance strategies in building maintenance management. However, there are some limitations that reactive maintenance cannot prevent failure, and preventive maintenance cannot predict the future condition of MEP components and repair in advance to extend the lifetime of facilities. Therefore, this study aims to apply a predictive maintenance strategy with advanced technologies to overcome these limitations. Building information modeling (BIM) and Internet of Things (IoT) have the potential to improve the efficiency of facility maintenance management (FMM). Despite the significant efforts that have been made to apply BIM and IoT to the architecture, engineering, construction, and facility management (AEC/FM) industry, BIM and IoT integration for FMM is still at an initial stage. In order to provide a better maintenance strategy for building facilities, a data-driven predictive maintenance planning framework based on BIM and IoT technologies for FMM was developed, consisting of an information layer and an application layer. Data collection and data integration among the BIM models, FM system, and IoT network are undertaken in the information layer, while the application layer contains four modules to achieve predictive maintenance, namely: (1) condition monitoring and fault alarming module, (2) condition assessment module, (3) condition prediction module, and (4) maintenance planning module. Machine learning algorithms, ANN and SVM, are used to predict the future condition of MEP components. Furthermore, the developed framework was applied in an illustrative example to validate the feasibility of the approach. The results show that the constantly updated data obtained from the information layer together with the machine learning algorithms in the application layer can efficiently predict the future condition of MEP components for maintenance planning. | Link |