FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong


Below Information is provided by the Higher Insitutions signed MoU with CIC.



Date: From


Institution Title Type Date Author(s) Abstract Link
HKUST Optimizing lift operations and vessel transport schedules for disassembly of multiple offshore platforms using BIM and GIS Journal 06/2018 Tan, Y., Song, Y., Zhu, J., Long, Q., Wang, X., and Cheng, J.C.P. As the coming decades will witness a big trend in the decommissioning of offshore platforms, simultaneously disassembling topsides of multiple offshore platforms is getting increasingly common. Considering high risk and cost of offshore operations, module lift planning among multiple offshore platforms with transport vessels is required to be carefully conducted. The lift planning usually contains two main parts: module layout on vessels planning and vessel transport schedules arrangement. In contrast to the current experience-driven module lift planning, this paper formulates the lift planning optimization problem and develops a web system integrating building information modeling (BIM) and geographical information system (GIS) to efficiently disassemble topsides for multiple offshore platforms. BIM provides detailed information required for planning module layout on vessels and GIS contains the management and analysis of geospatial information for the vessel transport schedule arrangement. As for module layout optimization, three heuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and firefly algorithm (FA) are implemented and compared to obtain the module layout with the minimum total lift time. While for vessel transport schedule, graph search technique is integrated with a developed schedule clash detection function to obtain the transport schedule with the minimum sailing time. The proposed optimization algorithms and techniques are integrated into a developed BIM/GIS-based web system. An example of three offshore platforms with eighteen modules in total is used to illustrate the developed system. Results show that the developed system can significantly improve the efficiency of lift planning in multiple topsides disassembly. The developed BIM/GIS-based web system is also effective and practical in the resource allocation and task assignment among multiple locations, such as construction sites, buildings, and even cities. Link
HKUST Parametric modeling and evolutionary optimization for cost-optimal and low-carbon design of high-rise reinforced concrete buildings Journal 07/2019 Gan, V.J.L., Wong, C.L., Tse, K.T., Cheng, J.C.P., Lo, I.M.C., and Chan, C.M. Design optimization of reinforced concrete structures helps reducing the global carbon emissions and the construction cost in buildings. Previous studies mainly targeted at the optimization of individual structural elements in low-rise buildings. High-rise reinforced concrete buildings have complicated structural designs and consume tremendous amounts of resources, but the corresponding optimization techniques were not fully explored in literature. Furthermore, the relationship between the optimization of individual structural elements and the topological arrangement of the entire structure is highly interactive, which calls for new optimization methods. Therefore, this study aims to develop a novel optimization approach for cost-optimal and low-carbon design of high-rise reinforced concrete structures, considering both the structural topology and individual element optimizations. Parametric modelling is applied to define the relationship between individual structural members and the behavior of the entire building structure. A novel evolutionary optimization technique using the genetic algorithm is proposed to optimize concrete building structures, by first establishing the optimal structural topology and then optimizing individual member sizes. In an illustrative example, a high-rise reinforced concrete building is used to examine the proposed optimization approach, which can systematically explore alternative structural designs and identify the optimal solution. It is shown that the carbon emissions and material cost are both reduced by 18–24% after performing optimization. The proposed approach can be extended to optimize other types of buildings (such as steel framework) with a similar problem nature, thereby improving the cost efficiency and environmental sustainability of the built environment. Link
HKUST Quantification of construction and demolition waste prevented by BIM-based design validation: Case studies in South Korea Journal 01/2016 Won, J., Cheng, J.C.P., and Lee, G. Waste generated in construction and demolition processes comprised around 50% of the solid waste in South Korea in 2013. Many cases show that design validation based on building information modeling (BIM) is an effective means to reduce the amount of construction waste since construction waste is mainly generated due to improper design and unexpected changes in the design and construction phases. However, the amount of construction waste that could be avoided by adopting BIM-based design validation has been unknown. This paper aims to estimate the amount of construction waste prevented by a BIM-based design validation process based on the amount of construction waste that might be generated due to design errors. Two project cases in South Korea were studied in this paper, with 381 and 136 design errors detected, respectively during the BIM-based design validation. Each design error was categorized according to its cause and the likelihood of detection before construction. The case studies show that BIM-based design validation could prevent 4.3–15.2% of construction waste that might have been generated without using BIM. Link
HKUST Rebar Design Optimization and Prefabrication Automation Leveraging BIM Technology Report 06/2020 Tobias Cheuk Toa CHEUNG Steel reinforced concrete building structure is very common among Hong Kong. Cost estimation is an important part during the preparation process for a construction project. Nowadays in Hong Kong, the contractor use lots of time in this stage while some mistake may occur as the process is done manually. To reduce error and shorten cost estimation time, design optimization and prefabrication automation leveraging should be considered. This project aims to complete the two objectives by using Building Information Modeling and Dynamo. After the design, the moment envelope generated by ETABS should be extract and input for designing the structural components. When the design of structural component, coding in Dynamo should be able to calculate the construction cost estimation for the building. Construction joint, continuity of rebar and the matching of rebar should be considered and build a bar bending schedule.

This project will go through the reviewing of site solution for solving some common problems. After that, some algorithm will be review to check whether it suitable for solving the problem mathematically. At last, application of graph theory in python 3 is finished and full bin packing algorithm in python is finished for rebar matching to reduce material cost. Suggestion will be made for further study in this project.
HKUST Rebar Prefabrication Automation Leveraging BIM Technology FYP 06/2020 LEUNG, Jing
WONG, Ngo Nam Andrew
The construction industry attempts to focus on innovative construction methods and the use of IT to enhance productivity. In recent years, the application of Building Information Modelling (BIM) technology is more common in the market. BIM provides a platform for data exchange of different parties without any format conversion which facilitates cross-discipline communication. The Hong Kong government has been the pioneer in applying BIM in the design of some government capital projects to foster its usage in HK. However, BIM facilitates the stage of planning and designing, there should be ways to improve the performance in the construction stage. Dynamo is a built-in software of Revit to be used in this project to develop the construction information technology.

The objectives of this report are to introduce the use of Dynamo scripts for the generation of BVBS code, barcode, schedule, and drawings for automatic rebar fabrication with the assistance of Dynamo to a Revit BIM model. With the automatic generation and implementation of IT, time can be shortened and accuracy can be enhanced. By running the Dynamo scripts in this research, standardized detailed drawings and bar bending schedules can also be obtained automatically.
HKU Relations between Organizational Change and Building Information Modelling Implementation: A Social Network Analysis Thesis 04/2017 LEUNG Hiu Lam -- N.A.