FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning Journal 04/2016 Wang, Q., Kim, M.-K., Cheng, J.C.P., and Sohn, H. Precast concrete elements are popularly used and it is important to ensure that the dimensions of individual elements conforms to design codes. However, the current quality assessment of precast concrete elements is inaccurate and time-consuming. To address the problems, this study presents an automated quality assessment technique which estimates the dimensions of precast concrete elements with geometry irregularities using terrestrial laser scanners (TLS). While the scan data obtained from TLS represent the as-built condition of an element, a Building Information Modeling (BIM) model stores the as-design condition of the element. Taking the BIM model as a reference, the scan data are processed to estimate the as-built dimensions of the element. Experiments on a specimen demonstrated that the proposed technique can estimate the dimensions of elements effectively and accurately. Furthermore, a mirror-aided scanning approach, which aims to achieve reduced incident angles in real scanning environments, is proposed and validated by experiments. Link
HKUST Study on BIM Project Execution Plan and BIM Uses in Comparison with PMBOK Report 06/2020 Ka Wing Ngan
HUANG Li
Project successful strongly relies on PMBOK. Besides that, BIM is important because it is a powerful tool in delivery of BIM-based project. To implement BIM, BIM uses are defined based on project goals. To effective implement BIM as planned, BIM project execution plan (PXP) is necessary to control BIM. In the first section, this paper compares supporting infrastructure from BIM project execution plan (PXP) to PMBOK to find out the relationship. The categories of supporting infrastructure are BIM PXP overview, project information, key project contacts, project goals / BIM uses, organizational roles / staffing, BIM process design, BIM information exchanges, BIM and facility data requirement, collaboration procedures, quality control, technological infrastructure needs, model structure, project deliverables and delivery strategy / contract whereas PMBOK are integration, scope, time, cost, quality, human resources, communication, risk, procurement and stakeholder management. From the investigation, it is found that risk and cost management is not obviously applied from the categories of supporting infrastructure. In the second section, this paper investigate the relationship of various BIM uses in terms of PMBOK. The considerable BIM uses are design authoring, design review, 3D coordination, cost estimation, phase planning (4D Modelling), digital fabrication and site utilization planning. It is also found that scope, communication and human resources management is not obviously applied from the selected BIM uses. In the third section, we recommend that for BIM PXP additional section including project cost management and BIM risk management should be included; and for BIM uses attention should be paid in drafting BIM PXP to support BIM uses and other BIM uses maybe considered. Manager may benefit from the relationship developed and recommendation in BIM implementation. N.A.
HKUST Natural-language-based intelligent retrieval engine for BIM object database Journal 03/2019 Wu, S., Shen, Q., Deng, Y., and Cheng, J.C.P. Rapid growth of building components in the BIM object database increases the difficulty of the efficient query of components that users require. Retrieval technology such as Autodesk Seek in America and BIMobject in Europe, which are widely used in BIM databases, are unable to understand what the search field truly means, causing a lack of completion and a low accuracy rate for results incapable of meeting the demands of users. To tackle such a problem, this paper puts forward a natural-language-based intelligent retrieval engine for the BIM object database and Revit modeling. First, a domain ontology is constructed for semantic understanding, and the BIM object database framework is established for testing our search engine. Second, “target keyword” and “restriction sequence” proposed are extracted from the natural sentences of users. Then, a final query is formed, combining concepts of “keyword” and “restriction sequence”, and its concepts are expanded through the semantic relationship in ontology. Finally, the results are presented after mapping from the final query to the BIM object database and ranking of results. Compared with traditional keyword-based methods, the experimental results demonstrate that our method outperforms the traditional methods. Link
HKUST Automated Optimization and Clash Resolution of Steel Reinforcement in RC Frames Using Building Information Modeling and Hybrid Genetic Algorithm Thesis 08/2017 Mohit MANGAL Reinforced concrete (RC) is widely used in building construction. Steel reinforcement design for RC frames is a necessary and important task for designing RC building structures. Currently, steel reinforcement design is performed manually or semi-automatically with the aid of computer software. These methods are error-prone, time-consuming, and sometimes resulting in over-design or under-design. In addition, clashes of steel reinforcement bars are rarely considered during the design stage and they often occur in beam-column joints on site nowadays. Additional time and manpower are often needed to resolve these clashes in an ad-hoc manner. Sometimes, it is impossible to resolve clashes without moving the steel reinforcement bars and redesigning steel reinforcement layout. Therefore, this research aims to develop a framework for automating the steel reinforcement design process for RC frames using the building information modelling (BIM) technology. BIM has been increasingly popular in the architecture, engineering and construction (AEC) industry for some years, but its use in structural design is still limited to extracting construction design and clash detection. However, BIM models provide much geometric and functional information and can be used for steel reinforcement optimization and clash resolution as well.

This research presents an automated steel reinforcement optimization framework with modified version (considering clash resolution) based on the BIM technology. The first framework uses information from a BIM model to intelligently suggest the number, size and arrangement of three types of steel reinforcement (i.e., tensile, compressive, and shear) with minimum steel reinforcement area. The framework uses the developed hybrid Genetic Algorithm-Hooke and Jeeves (GA-HJ) approach to optimize the steel reinforcement according to the loading conditions, end-support conditions and geometry of the RC member (RC beam or RC column). The developed GA-HJ approach increases the efficiency as well as the quality of the optimum solutions. The modified version of the framework is then developed to utilize and integrate the 3D spatial information of RC frame from a BIM model to provide clash-free and optimized steel reinforcement design. The modified framework uses a two-stage GA approach to provide clash-free, optimized, constructable, and design code compliant steel reinforcement design. Overall, the developed frameworks provide fast and error-free steel reinforcement design with the minimum area of steel reinforcement when compared with currently available steel reinforcement design approaches. In addition, the developed GA-HJ approach can be modified and used to support other building design optimization problems in future.
N.A.
HKUST Evaluation and Development of Automated Detailing Design Optimization Framework for RC Slabs Using BIM and Metaheuristics Thesis 08/2019 Muhammad AFZAL Reinforced concrete (RC) structural design optimization has been undertaken for several decades and plays an important role in maximizing the reliability, cost efficiency, and environmental sustainability of RC structures. However, optimization of RC structural design is challenging and requires advanced strategies during different life cycle phases of RC structures. Over the past few decades, substantial fundamental research efforts in RC structural design optimization have been undertaken, but there is a lack of a comprehensive review of these efforts that can provide academic and industry practitioners with sufficient detailed insights. Therefore, this research introduces a critical evaluation of previous research related to the optimization of RC structures for minimizing the amount of construction materials, the material cost, and the environmental effects, with more emphasis on detailing design (such as steel reinforcement), aiming to identify the common research themes and highlight the future directions. Based on the critical evaluation, the portfolio of 348 available research articles presents the identified research gaps and potential future research directions. For example, the adoption of clash-free rebar design optimization, detailing design optimization of complex and irregular RC components, and the concentration of design for manufacture and assembly (DfMA) aspects, are seldom conducted and studied.
Moreover, steel reinforcement detailing design of RC structures is one of the common and important tasks in building construction. Currently, despite having introduced advanced computing technologies in the architecture, engineering, and construction (AEC) industry, the rebar detailing design process is still predominantly performed by manual or at least semi-manual approaches, with the aid of computer software packages following the regional design codes. Manual or semi-manual perspectives often result in conservative, uncertain, and sometimes unacceptable outcomes. Additionally, the simple design of RC structural elements can potentially face constructability issues such as congestion, collision, and complexity which may cause complications during the procurement of rebars and other elements all along the construction phase. These issues also hinder concrete pouring and as a result, generate improper compounding of concrete with the rebars which disturb the integrity of the RC structure. All these concerns substantially increase the construction cost, time and quality and thus are uneconomical for AEC industry stakeholders. Although a few previous studies have conducted detailing design optimization of RC structures, very little attention has been given to the above-mentioned issues. Therefore, this research also aims to develop a holistic BIM-based framework utilizing the different meta-heuristic algorithms (such as SGA, SGA-SQP, and PSO-SQP, etc.) for the optimal detailing design of RC solid slabs, considering the minimization of overall construction cost. The main objective function determines the overall minimized construction cost of the RC solid slab, including the cost of steel reinforcement bars in all reinforcing layers, the cost of concrete, and the cost of labor for installing the steel reinforcement bars and pouring the concrete in the RC solid slab. The optimization process is handled in such a way that the first stage optimizes the steel reinforcement present in all four reinforcing layers (two layers each at the bottom and top of solid slab), while the second stage optimizes the solid slab thickness based on the characteristic concrete strength.

For the optimum design to be directly constructible without any further alterations, aspects such as available standard rebar diameters, spacing requirements of the rebars, relevant regional design provisions (i.e. British Standards), and the above-mentioned constructability (more specifically clash-avoidance) concerns, are also incorporated into the development of optimization model. In this research, a case study of a typical RC solid slab containing one-way and two-way spanning slab panels is analyzed to investigate the capabilities of the proposed framework. The results demonstrate the potential of the developed model in producing optimum and realistic design solutions. The developed model can be utilized as a design tool to retrieve economical design solutions at the early-stage structural detailing design.
N.A.
HKUST Earthquake scenario simulation of urban transportation hub: building information modeling and site-city interaction FYP 06/2018 Yeung Tsun Fung
Chau Pang, Francis
Lam Ka Tsun
Seismic capacity of an underground urban transportation hub becomes essential to reduce the risk of seismic hazards. By conducting a comprehensive seismic analysis, it is possible to predict the seismic hazard of the transportation hub more accurately. However, seismic design for the transportation hub is of importance to analyze the soil-structure interaction effect. Therefore, Kowloon Station is selected as a testbed to demonstrate whether the SSI effect is beneficial or detrimental. Today Building Information Modelling becomes a powerful tool to develop a three-dimensional digital model such that it can act as a database for further seismic analysis. Since the numerical finite element modelling method is a common approach to solve the problem, in this study, Plaxis 3D, a professional geotechnical FEM software, is selected to investigate the SSI effect on Kowloon Station. Advanced material models are provided to deal with the complexity of the problem.

The results show that the SSI effect has a beneficial effect which the peak acceleration of the structure base is smaller than that at the ground surface. To carry out a more realistic simulation, more laboratory tests should be carried out to obtain the dynamic soil properties. In order to examine the damage to structural and non-structural components of the structure, the recorded PGA can be applied in further studies such as fragility curves so as to analyze probability of the damage.
N.A.