香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Evaluation of the BIM Adoption for Civil Infrastructure and Development of a 5D BIM Financial Decision Making Framework Thesis 08/2015 Qiqi LU Building Information Modeling (BIM) has been widely adopted in the building industry. However, the application of BIM in civil infrastructure facilities, sometimes referred to Civil Information Modeling (CIM), is relatively lacking and slow. Researchers and practitioners are increasingly putting efforts into CIM study and implementation, but so far there is no comprehensive review of their efforts in this regard. Such study can help the academia and industry find the gaps and identify future research direction. Therefore, this work firstly presents a framework to evaluate the current practices of CIM adoption for various civil infrastructure facilities. In this study, civil infrastructure facilities were divided into nine categories for evaluation and the efforts with regard to CIM adoption for each infrastructure category were evaluated in six aspects. This study summarizes the results of 171 case studies and 62 academic papers on CIM. Based on the evaluation and comparison results, research gaps and future direction are identified. For example, CIM uses for detailed design and documentation phase and O&M phase like 5D cost estimation, are seldom conducted and studied.

5D BIM has been studied in academic research and implemented in industry. However, existing studies on 5D BIM focus on cash outflow estimation rather than cash inflow analysis and project financing. This thesis proposes a 5D BIM-based framework for cash flow analysis and project financing. This framework considers contract types and retainage to estimate cash inflow, and cash outflow patterns for equipment, manpower and materials to accurately estimate cash outflow. Project financing scenarios can also be evaluated using the framework. One building case and one bridge case are demonstrated to validate the proposed framework by considering various what-if scenarios. The framework can help contractors analyze the cash flow and make appropriate decisions for different design and payment scheme alternatives in various types of construction projects.
N.A.
HKUST Automated Quality Assessment of Precast Concrete Elements Using 3D Laser Scan Data Thesis 08/2017 Qian WANG Precast concrete elements are popularly adopted in buildings and civil infrastructures like bridges because they provide well-controlled quality, reduced construction time, and less environmental impact. To ensure the performance of complete precast concrete structures, individual precast concrete elements must be cast according to the as-designed blueprints. Any inconsistency between the as-built and as-designed dimensions can result in assembly difficulty or structure failure, causing delay and additional cost. Therefore, it is essential to conduct geometry quality assessment for precast concrete elements before they are shipped to the construction sites. Currently, the quality assessment of precast concrete elements is still relying on manual inspection, which is time-consuming and labor-intensive. Besides, due to tedious work, manual inspection is also error-prone and unreliable. Thus, automated, efficient, and accurate approaches for geometry quality assessment of precast concrete elements are desired. Nowadays, 3D laser scanning has been widely applied to the quality assessment of buildings and civil infrastructures because it can acquire 3D range measurement data at a high speed and high accuracy. However, existing research of laser scanning based quality assessment is mainly focused on simple-geometry elements, such as straight columns and rectangular concrete surfaces. There has been limited research on the quality assessment of precast concrete elements with complex shapes. To tackle the limitations of existing research, this research aims to develop automated, efficient, and accurate techniques for the geometry quality assessment of precast concrete elements using 3D laser scan data. The geometry quality assessment includes dimensional quality assessment, surface flatness and distortion assessment, and rebar position assessment.

For dimensional quality assessment, a dimensional quality assessment technique focusing on the side surfaces of precast concrete panels is developed. This technique aligns the laser scan data with the as-designed building information model (BIM), and extracts the as-built dimensions of the elements. Furthermore, an improved dimensional quality assessment and as-built BIM creation technique is developed to inspect the entire precast concrete element, rather than a surface only, and to automatically create a BIM model for storing the as-built dimensions for better visualization and management. As a supporting study, a novel mixed pixel filter is developed to remove noise data namely mixed pixels from raw laser scan data and to improve the dimension estimation accuracy. The proposed mixed pixel filter formulates the locations of mixed pixels, based on which the optimal threshold value is obtained to classify scan data into mixed pixels and valid points. Another supporting study is to investigate the influence factors for edge line estimation accuracy. Four influence factors are identified and the effect of each factor is analyzed based on numerical simulations. Implications are eventually suggested based on the analysis.

For surface flatness and distortion assessment, the developed technique identifies a few measures for both surface flatness and distortion. These measures are then automatically calculated from the laser scan data of the precast concrete surface for surface quality assessment. Furthermore, an automated rebar position estimation technique is developed to estimate the rebar positions for rebar positioning quality assessment. The technique can recognize individual rebars from the laser scan data of reinforced precast concrete elements and accurately estimate the rebar positions.

This research provides automated approaches for the quality assessment of precast concrete elements, which are able to greatly save the labor cost and time for quality assessment. In addition, the quality of precast concrete structures can be improved due to the faster and more economical quality assessment, thereby further promoting the adoption of precast concrete elements in the construction industry.
N.A.
HKU The Investigation on the Usage of Building Information Modeling (BIM) in Hong Kong Thesis 04/2014 POON Ho Yu -- N.A.
HKUST Incorporating Project Management Techniques in BIM Projects Report 06/2018 Ping Hon YAU
Ziyan LIU
Ho Yuen NG
Sherman WONG
Building Information Modelling (BIM) has had a profound effect on the construction industry. It has greatly improved coordination among stakeholders, enhanced productivity, and increased profits. However, risks and hazards are also increasing with the growing complexity and scale of AEC projects, and the adoption of BIM technology will also place barriers and obstacles even though the technology has been proven to show its various benefits throughout the project lifecycle. Firstly, a literature review is conducted to identify risks and benefit of implementing BIM. twenty-one risks are identified and classified into three categories: Technology, Contract, and Project. Secondly, some suggestions for eliminating the increased risks are given. This paper will focus on how to implement risk management in BIM project against the recent technological background, and some related measures of mitigation, such as insurance, will be discussed. N.A.
HKUST Analysis of Urban Walkability Using BIM and 3D GIS Models FYP 06/2019 NG, Ho Yin
NG, Sze Wai
Walkability problems are serious issues that influences people’s daily lifestyle. Providing a walkable environment is crucial to maintaining the living standard of people. Therefore, the proposal of Policy Address 2017 from the Hong Kong government has proposed the idea of the development of a walkable city. Kwun Tong was industrialized in an early stage and it was realized that many facilities were not satisfied with the standard of the barrier-free facility so it had undoubtedly been one of the targets. In the past, people analyzed walkability problems using the scoring system, observation or on-site investigation. However these approaches were extremely time-consuming, and were lack of efficiency and effectiveness to tackle the problem. Also, it was difficult to realize both macroscopic and microscopic problems at the same time. Hence, this project aims at dealing with the walkability problems by applying the smart technology, Building Modelling Information Technology (BIM) as well as Graphic Information System (GIS) while this report is mainly focusing on the BIM part at this first developing stage. BIM has been applied in the architecture, engineering and construction (AEC) industry for over a decade but there is less application on the walkability problems in Hong Kong.

The ultimate objective of this project is to enhance and promote the concept of walkability to citizens by applying the policy using smart technology. This project is divided into three stages. The first stage will develop a 3D BIM model of the real district, Tsui Ping North Estate in Kwun Tong. The second stage aims at drawing the 3C line network on the 3D BIM Model so that it can present the walking path of people in different situations. Some selected paths will be used to evaluate its cost and the lowest cost will be considered as the perfect path. In stage three, based on this perfect condition, information will be exported to simulate the walking behavior of people in a different situation. By applying BIM Technology, it can demonstrate the real situation in the computer so as to find out the walking difficulties of people, particularly our targeted group, wheelchair users and the elderly. Likewise, making modifications in the current design, extensions of the walkway or any other possible suggestions will be provided according to the demonstrations so that we can develop a walkable city in the future.
N.A.
HKUST Evaluation and Development of Automated Detailing Design Optimization Framework for RC Slabs Using BIM and Metaheuristics Thesis 08/2019 Muhammad AFZAL Reinforced concrete (RC) structural design optimization has been undertaken for several decades and plays an important role in maximizing the reliability, cost efficiency, and environmental sustainability of RC structures. However, optimization of RC structural design is challenging and requires advanced strategies during different life cycle phases of RC structures. Over the past few decades, substantial fundamental research efforts in RC structural design optimization have been undertaken, but there is a lack of a comprehensive review of these efforts that can provide academic and industry practitioners with sufficient detailed insights. Therefore, this research introduces a critical evaluation of previous research related to the optimization of RC structures for minimizing the amount of construction materials, the material cost, and the environmental effects, with more emphasis on detailing design (such as steel reinforcement), aiming to identify the common research themes and highlight the future directions. Based on the critical evaluation, the portfolio of 348 available research articles presents the identified research gaps and potential future research directions. For example, the adoption of clash-free rebar design optimization, detailing design optimization of complex and irregular RC components, and the concentration of design for manufacture and assembly (DfMA) aspects, are seldom conducted and studied.
Moreover, steel reinforcement detailing design of RC structures is one of the common and important tasks in building construction. Currently, despite having introduced advanced computing technologies in the architecture, engineering, and construction (AEC) industry, the rebar detailing design process is still predominantly performed by manual or at least semi-manual approaches, with the aid of computer software packages following the regional design codes. Manual or semi-manual perspectives often result in conservative, uncertain, and sometimes unacceptable outcomes. Additionally, the simple design of RC structural elements can potentially face constructability issues such as congestion, collision, and complexity which may cause complications during the procurement of rebars and other elements all along the construction phase. These issues also hinder concrete pouring and as a result, generate improper compounding of concrete with the rebars which disturb the integrity of the RC structure. All these concerns substantially increase the construction cost, time and quality and thus are uneconomical for AEC industry stakeholders. Although a few previous studies have conducted detailing design optimization of RC structures, very little attention has been given to the above-mentioned issues. Therefore, this research also aims to develop a holistic BIM-based framework utilizing the different meta-heuristic algorithms (such as SGA, SGA-SQP, and PSO-SQP, etc.) for the optimal detailing design of RC solid slabs, considering the minimization of overall construction cost. The main objective function determines the overall minimized construction cost of the RC solid slab, including the cost of steel reinforcement bars in all reinforcing layers, the cost of concrete, and the cost of labor for installing the steel reinforcement bars and pouring the concrete in the RC solid slab. The optimization process is handled in such a way that the first stage optimizes the steel reinforcement present in all four reinforcing layers (two layers each at the bottom and top of solid slab), while the second stage optimizes the solid slab thickness based on the characteristic concrete strength.

For the optimum design to be directly constructible without any further alterations, aspects such as available standard rebar diameters, spacing requirements of the rebars, relevant regional design provisions (i.e. British Standards), and the above-mentioned constructability (more specifically clash-avoidance) concerns, are also incorporated into the development of optimization model. In this research, a case study of a typical RC solid slab containing one-way and two-way spanning slab panels is analyzed to investigate the capabilities of the proposed framework. The results demonstrate the potential of the developed model in producing optimum and realistic design solutions. The developed model can be utilized as a design tool to retrieve economical design solutions at the early-stage structural detailing design.
N.A.