香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Analysis of Urban Walkability Using BIM and 3D GIS Models FYP 06/2019 NG, Ho Yin
NG, Sze Wai
Walkability problems are serious issues that influences people’s daily lifestyle. Providing a walkable environment is crucial to maintaining the living standard of people. Therefore, the proposal of Policy Address 2017 from the Hong Kong government has proposed the idea of the development of a walkable city. Kwun Tong was industrialized in an early stage and it was realized that many facilities were not satisfied with the standard of the barrier-free facility so it had undoubtedly been one of the targets. In the past, people analyzed walkability problems using the scoring system, observation or on-site investigation. However these approaches were extremely time-consuming, and were lack of efficiency and effectiveness to tackle the problem. Also, it was difficult to realize both macroscopic and microscopic problems at the same time. Hence, this project aims at dealing with the walkability problems by applying the smart technology, Building Modelling Information Technology (BIM) as well as Graphic Information System (GIS) while this report is mainly focusing on the BIM part at this first developing stage. BIM has been applied in the architecture, engineering and construction (AEC) industry for over a decade but there is less application on the walkability problems in Hong Kong.

The ultimate objective of this project is to enhance and promote the concept of walkability to citizens by applying the policy using smart technology. This project is divided into three stages. The first stage will develop a 3D BIM model of the real district, Tsui Ping North Estate in Kwun Tong. The second stage aims at drawing the 3C line network on the 3D BIM Model so that it can present the walking path of people in different situations. Some selected paths will be used to evaluate its cost and the lowest cost will be considered as the perfect path. In stage three, based on this perfect condition, information will be exported to simulate the walking behavior of people in a different situation. By applying BIM Technology, it can demonstrate the real situation in the computer so as to find out the walking difficulties of people, particularly our targeted group, wheelchair users and the elderly. Likewise, making modifications in the current design, extensions of the walkway or any other possible suggestions will be provided according to the demonstrations so that we can develop a walkable city in the future.
N.A.
HKUST Automatic Generation of BIM Models Based on Photogrammetry and Laser Scanning Point Cloud Data FYP 06/2019 LEUNG, Chi Ching
SONG, Changhao
As-built drawings are essential to provide information about the most updated configuration of a facility or a structure for project delivery and facility management. Yet, it is stated that approximately 55% of the as-built drawings was found mismatching with the updated configuration of the building, incurring an additional cost of $4.8 billion for verification of the as-built drawings. This paper aims to develop a more advanced method towards automated generation of BIM model using point cloud data from laser scanning based on that developed previously by our research team, reducing labour, cost and time consumed in modelling processes. Geometry information extraction was conducted to each category of the point cloud data with the aim to obtain parameters for automated parametric modelling using Dynamo command networks. The proposed approach was validated by successfully generating as-built Revit models for 3 different sites. N.A.
HKUST Integrating Building Information Modeling and Internet of Things for Building Facility Management FYP 06/2019 CHAN, Sum Chau
DWIVEDY, Sampriti
In Hong Kong’s Smart City Blueprint, promoting ‘Green and Intelligent Buildings, and Energy Efficiency’ is one of the most important initiatives. HKUST, as the leading university in Hong Kong, has been working for years to build a better, smarter and greener campus. Keeping in line with HKUST’s “Sustainable Smart Campus as a Living Lab (SSC)” initiative, this project seeks to enable the Facilities Management Office to make better decisions with respect to balancing the trade-off between human thermal comfort and energy costs. This can be done by optimizing the operational controls of the existing heating, ventilation and air-conditioning systems (HVAC) to the occupancy level of the facility. The research was divided into two case studies, one that focuses on occupancy prediction with the use of machine learning and the other seeks to demonstrate how building information modelling (BIM) and Internet of Things (IoT) can be used to visualize the tradeoff between user thermal comfort and energy costs.

This project also discusses a flowchart to integrate the various technologies being suggested. and identifies certain software tools that can be used to assist in the integration process, for instance Autodesk’s Forge. A web-based graphical user interface for an integrated smart facility management system was also constructed in order to provide a direction for future works on this topic.
N.A.
HKUST Optimization of Occupant Thermal Comfort and Energy Consumption in HVAC Systems Using a BIM-Supported Computational Approach FYP 06/2019 LUK, Tsz Hin
SIU, Chun Fai
This project aims to analyse thermal comfort and indoor air quality (IAQ) in a lecture theatre where the HVAC system consists of a Variable Air Volume (VAV) system, Displacement Ventilation (DV) system, and Demand Control Ventilation (DCV) system. Based on the simulation result, a strategy is proposed to minimize electricity consumption while maintaining sufficient thermal comfort and indoor air quality to the occupant.

The analysis is conducted using Building Information Modelling (BIM), Computational Fluid Dynamics (CFD) software, and energy simulation software to simulate the airflow, temperature, CO2 concentration and energy consumption in different scenarios. Thermal comfort and IAQ are evaluated by comparing the simulated result to the international standards and local guidelines such as ASHRAE and HKIAQ. Autodesk CFD, Revit, eQUEST and EnergyPlus are used for the simulations in this project.

The simulation result shows that ventilation at the back of the lecture theatre is poor even though the air handling units run in full capacity. This project has found that changing the location of the inlet of supply air duct can significantly improve the ventilation at the back without increasing the electricity consumption. CFD simulation shows that even in 100% occupancy, the lecture theatre after modification fulfils the requirement of an excellent class according to HKIAQ’s objective.
N.A.
HKUST Modeling of the indoor/outdoor exchange of air pollutants for the selected building with the aid of building information modeling technology FYP 06/2018 CHAN, Chun Tat
LUI, Kin Leung
TANG, Chloe
As with many other metropolitan cities, air pollution is an acute problem in Hong Kong; by affecting the health of its citizens, it affects the health care system and thus imposes economic burden. In 2015, air pollution led to 2,100 premature deaths and a resultant economic loss of HKD 27 billion. While people’s exposure to air pollutants differs in location and their respective activities, the critical occasions when they are exposed to the greatest amount of air pollutants remain ambiguous. Authorities have been attempting to tackle this problem by scrutinising big data to provide real-time estimations of individuals’ exposure to key air pollutants. A crucial element that enables such technology is the capability of obtaining the pollutant concentrations of different indoor-microenvironments based on the outdoor air quality. This paper reports an ongoing study on the simulation of the indoor/outdoor exchange of air pollutants with the aid of Building Information Modelling technology (BIM), followed by computational fluid dynamics simulations. The Exchange Tower in Kowloon Bay was selected as representative of a typical Hong Kong office building; its daily operation and building systems were analysed and evaluated. The results revealed that indoor environments can be described by their temperature and flow fields, which are highly related. The interdependency of these two variables means that the flow field can be derived once sufficient information on the temperature field can be gathered. This is crucial as the dispersion of air pollutants greatly depends on the characteristic of the flow field. In terms of buildings’ operation and management, a properly designed, well-mixed air distribution system was found to be effective in reducing local concentration of inert air pollutants. It was also energy efficient whilst providing comfort to the building occupants. This implies that regulations on improving building systems and monitoring the resulting indoor air quality could reduce people’s exposure to air pollutants and thereby alleviate the associated impacts and their corollaries. N.A.
HKUST Analysis and Evaluation of Low Carbon Building Features Using Building Information Modeling FYP 06/2018 CHAN, Yin Yee
TSANG, Chun Kit
Building sector contributes to more than 30% of the global greenhouse gas emissions, which is the major source of greenhouse gas emissions. In Hong Kong, a high-rise and high-density city, about 60% of carbon emissions and 90% of energy expenditure come from buildings. Mitigating the environmental impacts caused by the building sector can be achieved by low carbon buildings. However, previous studies on carbon emissions from buildings mainly adopted manual processes and only a few studies applied computational fluid dynamics (CFD) into the analysis and calculated the carbon emissions using the CFD results. Therefore, the comparison between buildings with different features is laborious. Building information modelling (BIM) enables comprehensive and accurate analysis of low carbon building features by collaborating with various simulation systems. By incorporating CFD into the analysis and evaluation of the carbon footprint of different Hong Kong public housing standard blocks using BIM, the research of low carbon building is extended. Revit models of three common Hong Kong public housing blocks are created, and the embodied carbon is quantified by using the material schedules and the corresponding carbon emission factors of different construction materials. The operational carbon is quantified by using the energy simulation results and the CFD results. By considering the total carbon emissions throughout the life-cycle of the buildings, it is found that the harmony block has the lowest carbon emissions among studied public housing standard blocks. When considered the effect of natural ventilation, the energy consumption of the buildings can be reduced up to 17%. N.A.