香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Integrating Building Information Modeling and Internet of Things for Building Facility Management FYP 06/2019 CHAN, Sum Chau
DWIVEDY, Sampriti
In Hong Kong’s Smart City Blueprint, promoting ‘Green and Intelligent Buildings, and Energy Efficiency’ is one of the most important initiatives. HKUST, as the leading university in Hong Kong, has been working for years to build a better, smarter and greener campus. Keeping in line with HKUST’s “Sustainable Smart Campus as a Living Lab (SSC)” initiative, this project seeks to enable the Facilities Management Office to make better decisions with respect to balancing the trade-off between human thermal comfort and energy costs. This can be done by optimizing the operational controls of the existing heating, ventilation and air-conditioning systems (HVAC) to the occupancy level of the facility. The research was divided into two case studies, one that focuses on occupancy prediction with the use of machine learning and the other seeks to demonstrate how building information modelling (BIM) and Internet of Things (IoT) can be used to visualize the tradeoff between user thermal comfort and energy costs.

This project also discusses a flowchart to integrate the various technologies being suggested. and identifies certain software tools that can be used to assist in the integration process, for instance Autodesk’s Forge. A web-based graphical user interface for an integrated smart facility management system was also constructed in order to provide a direction for future works on this topic.
N.A.
HKUST Automatic Generation of BIM Models Based on Photogrammetry and Laser Scanning Point Cloud Data FYP 06/2019 LEUNG, Chi Ching
SONG, Changhao
As-built drawings are essential to provide information about the most updated configuration of a facility or a structure for project delivery and facility management. Yet, it is stated that approximately 55% of the as-built drawings was found mismatching with the updated configuration of the building, incurring an additional cost of $4.8 billion for verification of the as-built drawings. This paper aims to develop a more advanced method towards automated generation of BIM model using point cloud data from laser scanning based on that developed previously by our research team, reducing labour, cost and time consumed in modelling processes. Geometry information extraction was conducted to each category of the point cloud data with the aim to obtain parameters for automated parametric modelling using Dynamo command networks. The proposed approach was validated by successfully generating as-built Revit models for 3 different sites. N.A.
HKUST Analysis of Urban Walkability Using BIM and 3D GIS Models FYP 06/2019 NG, Ho Yin
NG, Sze Wai
Walkability problems are serious issues that influences people’s daily lifestyle. Providing a walkable environment is crucial to maintaining the living standard of people. Therefore, the proposal of Policy Address 2017 from the Hong Kong government has proposed the idea of the development of a walkable city. Kwun Tong was industrialized in an early stage and it was realized that many facilities were not satisfied with the standard of the barrier-free facility so it had undoubtedly been one of the targets. In the past, people analyzed walkability problems using the scoring system, observation or on-site investigation. However these approaches were extremely time-consuming, and were lack of efficiency and effectiveness to tackle the problem. Also, it was difficult to realize both macroscopic and microscopic problems at the same time. Hence, this project aims at dealing with the walkability problems by applying the smart technology, Building Modelling Information Technology (BIM) as well as Graphic Information System (GIS) while this report is mainly focusing on the BIM part at this first developing stage. BIM has been applied in the architecture, engineering and construction (AEC) industry for over a decade but there is less application on the walkability problems in Hong Kong.

The ultimate objective of this project is to enhance and promote the concept of walkability to citizens by applying the policy using smart technology. This project is divided into three stages. The first stage will develop a 3D BIM model of the real district, Tsui Ping North Estate in Kwun Tong. The second stage aims at drawing the 3C line network on the 3D BIM Model so that it can present the walking path of people in different situations. Some selected paths will be used to evaluate its cost and the lowest cost will be considered as the perfect path. In stage three, based on this perfect condition, information will be exported to simulate the walking behavior of people in a different situation. By applying BIM Technology, it can demonstrate the real situation in the computer so as to find out the walking difficulties of people, particularly our targeted group, wheelchair users and the elderly. Likewise, making modifications in the current design, extensions of the walkway or any other possible suggestions will be provided according to the demonstrations so that we can develop a walkable city in the future.
N.A.
HKUST Rebar Prefabrication Automation Leveraging BIM Technology FYP 06/2020 LEUNG, Jing
WONG, Ngo Nam Andrew
The construction industry attempts to focus on innovative construction methods and the use of IT to enhance productivity. In recent years, the application of Building Information Modelling (BIM) technology is more common in the market. BIM provides a platform for data exchange of different parties without any format conversion which facilitates cross-discipline communication. The Hong Kong government has been the pioneer in applying BIM in the design of some government capital projects to foster its usage in HK. However, BIM facilitates the stage of planning and designing, there should be ways to improve the performance in the construction stage. Dynamo is a built-in software of Revit to be used in this project to develop the construction information technology.

The objectives of this report are to introduce the use of Dynamo scripts for the generation of BVBS code, barcode, schedule, and drawings for automatic rebar fabrication with the assistance of Dynamo to a Revit BIM model. With the automatic generation and implementation of IT, time can be shortened and accuracy can be enhanced. By running the Dynamo scripts in this research, standardized detailed drawings and bar bending schedules can also be obtained automatically.
N.A.
HKUST Analysis of Urban Walkability Using BIM and 3D GIS Models FYP 06/2020 LAI, Chi Ching
POON, Kwok Ho
Walkability, which is defined as the friendliness of a city or district towards walking, has been evaluated in the current Urban Design Report released by the Planning Department. The ultimate target of urban planning is not only being walkable but also provides comfortable walkways for pedestrians to travel through the city. Surveying and walking audit are the two common methods to measure the walkability of a district. However, the two methods are subjected to personal views and labor-intensive in data collection. This study tries to integrate Building Information Modeling (BIM), medial axis transform (MAT) network, and pedestrian flow simulation to analyze the walkability of Kwun Tong District. This approach digitizes the study region with rich geometric and semantic information for comprehensive analysis, which could present high similarity to the real environment. The BIM model of this study is a 3D model of the Kwun Tong District binding with information of the walking facilities such as the opening hours and slope of the walkway. The 3D pedestrian network, which indicates the walkable paths in the 3D model with walkway information, is built on the BIM model in order to calculate the time cost using a self-defined utility function. Pathfinder is used for pedestrian flow simulation to capture videos of pedestrians walking in the specific route in the BIM model, which gives realistic and clear illustrations in the walking environment. This study covers the area along Ngau Tau Kok Station to Kwun Tong Station, including residential area and commercial area, which is able to simulate various pedestrian walking behaviors in different districts. Three phases of simulations are carried out in the study region in this project, trying to demonstrate the working principle of the study method by analyzing the walkability of a specific region, sorting out the problems, and trying to improve the walkability with alteration in the BIM model. The ultimate target of the study is to provide a platform for walkability analysis so that the effectiveness of the urban planning policies can be simulated before adoption. N.A.
HKUST Creating a Connected Digital Twin of HKUST Campus for Smart Campus Facility Management FYP 06/2020 FONG, Tsz Yan
KONG, Yu Hin
Experts in engineering defines BIM as a representation of a digital twin which is a virtual replica of a physical system (Marr 2017). A digital twin provides rich semantic and geometric information for facilitating construction and FM processes. Through Facility Management Systems (FMSs) and Building Management Systems (BMSs) linked with sensors, information can be garnered to support building FM. FMS or BMS is a computer-based system installed in offices or buildings ensuring that all buildings are structurally sound and serviceable.

In this research, we initially plan to incorporate two common FM software, namely ArchiBUS and Maximo with the HKUST FM system for the sake of maximizing the FM effectiveness and facilitating FM process. However, we did not get either one of the licenses of both software, so it turns out that we have to use other machine learning set of tools to do predictions for our library. The specific goals were (1) to build a machine learning model to perform temperature forecasting; (2) to make suggestion on the operative temperature of AC in library to ensure thermal comfort; (3) to provide common campus FM capabilities by setting up and demonstrating tailor-made user interfaces by using Power BI.
N.A.