香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Automated Clash-free Steel Reinforcement Design in RC Structures Using BIM and GA Report 06/2018 Tommy Yuen Currently, building information modelling (BIM) technology has been increasingly popular in the architecture, engineering and construction (AEC) industry for some years, but it is not widely adopted in structural design. The objective of this project is to develop a framework for automated rebar design in RC beams using the building information modelling (BIM) technology.

This project presents an automated rebar design program, based on the latest BIM technology. Design constraints for the optimization are considered according to the Hong Kong Code of Practice. The developed program will make use of the analysis result from structural software to design RC beams, and then the tailor-made genetic algorithm will optimize the final rebar design. Finally, generate the rebars to BIM model in 3D environment.

The result shows that BIM can carry out repetitive works and complicated calculations automatically and accurately. Unlike human, they seldom make mistakes through over-tiredness, do not require rest breaks and can carry out in seconds what may take hours to do by manual methods. The overall design process is fully automated, smooth and without error. Therefore, it is anticipated that the time and manpower resource required for structural design and management could be reduced significantly.
N.A.
HKUST Integrating 4D BIM and GIS for construction supply chain management Journal 02/2019 Deng, Y., Gan, V.J.L., Das, M., Cheng, J.C.P., and Anumba, C.J. Construction supply chain management (CSCM) requires the tracking of material logistics and construction activities, an integrated platform, and certain coordination mechanisms among CSCM participants. Researchers have suggested the use of building information modeling (BIM) technology to monitor construction activities and manage construction supply chains. However, because material warehousing and deliveries are mostly performed outside construction project sites, project information from a single BIM model is insufficient in meeting the needs of construction supply chain management. In this research, an integrated framework was developed based on four-dimensional (4D) BIM and a geographical information system (GIS) for coordination of construction supply chains between the construction project sites and other project related locations, such as supplier sites and material consolidation centers. The proposed integration was used to solve three common tasks in CSCM, namely (1) supplier selection, (2) determination of number of material deliveries, and (3) allocation of consolidation centers, using information from 4D BIM and GIS. The proposed 4D BIM-GIS framework was demonstrated via case studies. The results of the case studies indicated that determinations of supplier and number of deliveries need to take into account both the transportation distance and material unit price. Mathematical solutions were also generated to support decision making for the allocation of consolidation centers in congested regions with long transportation distances. The outcomes of this paper serve as a decision support base for a more efficient CSCM in the future. 連結
HKUST Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings Journal -- Gan, V.J.L., Wong, H.K., Tse, K.T., Cheng, J.C.P., Lo, I.M.C., and Chan, C.M. Buildings consume 40% of global energy, in which residential buildings account for a significant proportion of the total energy used. Previous studies have attempted to optimize the layout plan of residential buildings for minimizing the total energy usage, mainly focusing on low-rise houses of a regular shape and having a limited number of design variables. However, layout design for high-rise residential buildings involves the complicated interaction among a large number of design variables (e.g., different types of flats with varying configurations) under practical design constraints. The number of possible solutions may increase exponentially which calls for new optimization strategies. Therefore, this study aims to develop an energy performance-based optimization approach to identify the most energy-efficient layout plan design for high-rise residential buildings. A simulation-based optimization method applying the evolutionary genetic algorithm (GA) is developed to systematically explore the best layout design for maximizing the building energy efficiency. In an illustrative example, the proposed optimization approach is applied to generate the layout plan for a 40-storey public housing in Hong Kong. The results indicate that GA attempts to maximize the use of natural-occurring energy sources (e.g., wind-driven natural ventilation and sunlight) for minimizing 30–40% of the total energy consumption associated with air-conditioning and lighting. The optimization approach provides a decision support basis for achieving substantial energy conservation in high-rise residential buildings, thereby contributing to a sustainable built environment. 連結
HKUST Analysis and Evaluation of Low Carbon Building Features Using Building Information Modeling FYP 06/2018 CHAN, Yin Yee
TSANG, Chun Kit
Building sector contributes to more than 30% of the global greenhouse gas emissions, which is the major source of greenhouse gas emissions. In Hong Kong, a high-rise and high-density city, about 60% of carbon emissions and 90% of energy expenditure come from buildings. Mitigating the environmental impacts caused by the building sector can be achieved by low carbon buildings. However, previous studies on carbon emissions from buildings mainly adopted manual processes and only a few studies applied computational fluid dynamics (CFD) into the analysis and calculated the carbon emissions using the CFD results. Therefore, the comparison between buildings with different features is laborious. Building information modelling (BIM) enables comprehensive and accurate analysis of low carbon building features by collaborating with various simulation systems. By incorporating CFD into the analysis and evaluation of the carbon footprint of different Hong Kong public housing standard blocks using BIM, the research of low carbon building is extended. Revit models of three common Hong Kong public housing blocks are created, and the embodied carbon is quantified by using the material schedules and the corresponding carbon emission factors of different construction materials. The operational carbon is quantified by using the energy simulation results and the CFD results. By considering the total carbon emissions throughout the life-cycle of the buildings, it is found that the harmony block has the lowest carbon emissions among studied public housing standard blocks. When considered the effect of natural ventilation, the energy consumption of the buildings can be reduced up to 17%. N.A.
HKUST Building information modeling for energy consumption simulation and analysis FYP 06/2013 TSANG, Po Keung Building Information Modelling (BIM) is the 3D virtual model of buildings which embedded information to facilitate the knowledge management and share information with different parties such as architecture, engineering and construction (AEC). In the current stage, BIM is commonly used in design communication, structure and design visualization, clash detection, prefabrication, and 4D simulations. With the complex nature of AEC project, these processes engage multiple parties, professionals and diversified software. In order to effectively support the use of information, facility of an accurate exchange of data among different parties and software is the major concern. The Industry Foundation Classes (IFC) of BuildingSMART, which is standard for interchange of the BIM data in the AEC industry and recognized as methods and tools for project deliver during building life cycle. To extend the uses of BIM for energy analysis, this project shows a feasible approach of extending the IFC standard to satisfy the requirements for energy analysis and introduces an information model and proposes IFC extension to enhance computer aids energy analysis throughout the building life cycle. N.A.
HKUST Incorporating Project Management Techniques in BIM Projects Report 06/2018 Ping Hon YAU
Ziyan LIU
Ho Yuen NG
Sherman WONG
Building Information Modelling (BIM) has had a profound effect on the construction industry. It has greatly improved coordination among stakeholders, enhanced productivity, and increased profits. However, risks and hazards are also increasing with the growing complexity and scale of AEC projects, and the adoption of BIM technology will also place barriers and obstacles even though the technology has been proven to show its various benefits throughout the project lifecycle. Firstly, a literature review is conducted to identify risks and benefit of implementing BIM. twenty-one risks are identified and classified into three categories: Technology, Contract, and Project. Secondly, some suggestions for eliminating the increased risks are given. This paper will focus on how to implement risk management in BIM project against the recent technological background, and some related measures of mitigation, such as insurance, will be discussed. N.A.