資源
香港專上院校所提供之論文/研究刊物
院校 | 題目 | 類型 | 日期 | 作者 | 摘要 | 網頁 |
---|---|---|---|---|---|---|
HKUST | Rebar Design Optimization and Prefabrication Automation Leveraging BIM Technology | Report | 06/2020 | Tobias Cheuk Toa CHEUNG | Steel reinforced concrete building structure is very common among Hong Kong. Cost estimation is an important part during the preparation process for a construction project. Nowadays in Hong Kong, the contractor use lots of time in this stage while some mistake may occur as the process is done manually. To reduce error and shorten cost estimation time, design optimization and prefabrication automation leveraging should be considered. This project aims to complete the two objectives by using Building Information Modeling and Dynamo. After the design, the moment envelope generated by ETABS should be extract and input for designing the structural components. When the design of structural component, coding in Dynamo should be able to calculate the construction cost estimation for the building. Construction joint, continuity of rebar and the matching of rebar should be considered and build a bar bending schedule. This project will go through the reviewing of site solution for solving some common problems. After that, some algorithm will be review to check whether it suitable for solving the problem mathematically. At last, application of graph theory in python 3 is finished and full bin packing algorithm in python is finished for rebar matching to reduce material cost. Suggestion will be made for further study in this project. |
N.A. |
HKUST | BIM-Based Daylighting and Energy Analysis on UG Hall 7 of HKUST | Report | 06/2016 | Tianzhu QIN Huan HE Avinash SINGHAL |
BIM is a three-dimensional digital based model or technology with various project-related information inside. It is widely used in modern building industry. As buildings are consuming so much energy today, building energy save has become an important part of a project’s optimization. To achieve the purpose of saving and controlling a building's energy consumption by BIM related software prediction and adjustment and control is a simple and effective strategy. This project aims to make energy-saving analyzes of STUDENT HALL 7 of HKUST, the main study method is: Revit 3D model—Green Building Studio energy analysis—solar panel analysis—PVGIS analysis—ECOTECT environmental analysis. Firstly obtained the three-dimensional model of Hall 7 through REVIT, and then send the model to Autodesk Green Building Studio to make energy consumption analysis, than make solar panel analysis of the building to find the energy save of panels, afterwards use PVGIS to check if the saving ratio is rational. What’s more, we also import the REVIT into ECOTECT to make further analysis. |
N.A. |
HKUST | BIM Application for Construction and Demolition Waste Minimization | Report | 06/2015 | TAO Jiali | Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste production. Many countries have taken initiatives to reduce the construction and demolition waste. However, the current approaches, techniques and tools focus on separate projects onsite and limited effort is invested to put attention on pre-construction waste generation related to supply chain management issues and procurement, design and tender stages. Therefore this study aims to develop the BIM-based approaches for C&D waste in the aspect of waste estimation, 3R, prefabrication and clash detection. Besides, this study will also demonstrate and validate the developed approaches for C&D waste minimization using example scenarios. All in all, the application of BIM in C&D waste minimization can be better realized. C&D Waste estimation via the quantity takeoff tool and waste index can clearly show the accurate amount of the waste before the commencement of the works. Classifying the different construction material in BIM model and set up suitable C&D waste management planning definitely improve the efficiency of the waste management. Providing accurate information of precast units ahead of time and assisting the supply chain management can be achieved in BIM model. Visual clash detection reduces rework to some extent. |
N.A. |
HKUST | Optimizing lift operations and vessel transport schedules for disassembly of multiple offshore platforms using BIM and GIS | Journal | 06/2018 | Tan, Y., Song, Y., Zhu, J., Long, Q., Wang, X., and Cheng, J.C.P. | As the coming decades will witness a big trend in the decommissioning of offshore platforms, simultaneously disassembling topsides of multiple offshore platforms is getting increasingly common. Considering high risk and cost of offshore operations, module lift planning among multiple offshore platforms with transport vessels is required to be carefully conducted. The lift planning usually contains two main parts: module layout on vessels planning and vessel transport schedules arrangement. In contrast to the current experience-driven module lift planning, this paper formulates the lift planning optimization problem and develops a web system integrating building information modeling (BIM) and geographical information system (GIS) to efficiently disassemble topsides for multiple offshore platforms. BIM provides detailed information required for planning module layout on vessels and GIS contains the management and analysis of geospatial information for the vessel transport schedule arrangement. As for module layout optimization, three heuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and firefly algorithm (FA) are implemented and compared to obtain the module layout with the minimum total lift time. While for vessel transport schedule, graph search technique is integrated with a developed schedule clash detection function to obtain the transport schedule with the minimum sailing time. The proposed optimization algorithms and techniques are integrated into a developed BIM/GIS-based web system. An example of three offshore platforms with eighteen modules in total is used to illustrate the developed system. Results show that the developed system can significantly improve the efficiency of lift planning in multiple topsides disassembly. The developed BIM/GIS-based web system is also effective and practical in the resource allocation and task assignment among multiple locations, such as construction sites, buildings, and even cities. | 連結 |
HKUST | A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms | Journal | 03/2017 | Tan, Y., Song, Y., Liu, X., Wang, X., and Cheng, J.C.P. | Offshore oil and gas platforms (OOGPs) usually have a lifetime of 30–40 years. An increasing number of OOGPs across the world will be retired and decommissioned in the coming decade. Therefore, a safe and efficient approach in planning the disassembly of the topsides of OOGPs is required. One commonly applied disassembly method is reverse installation, which moves the OOGP modules from the platform deck to a heavy lift vessel (HLV) in reverse order of their installation. Considering the high risk and cost of working offshore, shortening the lift time is crucial. In contrast to the traditional experience-driven lift operations, this paper describes minimizing the lift path for each OOGP module during disassembly, leveraging building information modeling (BIM) technology and an improved A* algorithm. BIM models provide accurate component-based geometric and semantic information that can be used for planning and optimization. However, there has been no previous study on the use of BIM for offshore disassembly. Industry Foundation Classes (IFC), which is a neutral data model of BIM, is used in this study to represent OOGP models. In particular, the IfcBuildingElementProxy entity is used to represent the OOGP components, and the information in IfcBuildingElementProxy is automatically extracted to obtain the location and dimension information of each OOGP module. Then, for a given layout of modules on the removal vessel, the lift path and removal sequence of different modules, with the shortest lift path distance, are obtained. The lift path distance is calculated using the A* algorithm, which has been widely applied in 2D environments and is modified in this study to suit the 3D environment. Finally, the genetic algorithm (GA) technique is applied to optimize the layout plan on the removal vessel by minimizing the total lift path distance. The developed BIM-based framework is illustrated and evaluated through an illustrative example. The results show that the proposed framework can generate and visualize the shortest lift path for each OOGP module directly and automatically, and significantly improve the efficiency of OOGP disassembly. | 連結 |
HKUST | BIM-supported 4D acoustics simulation approach to mitigating noise impact on maintenance workers on offshore oil and gas platforms | Journal | 12/2018 | Tan, Y., Fang, Y., Zhou, T., Gan, V.J.L., and Cheng, J.C.P. | Maintenance workers on offshore platforms are usually exposed to a high level of noise from the working environment as most of the daily operations of oil and gas process machines generate noise over 85 dBA, causing substantial health and safety issues. Avoiding exposure of workers to the modules that generate high sound power during maintenance activities can significantly mitigate the noise impact on human health and safety. Noise simulation and noise mapping methodologies can be used to evaluate and quantify the noise impact on offshore platforms. However, limited digital information of offshore platforms makes noise simulation setup challenging as modules on topsides have a high level of details. In addition, current noise mapping studies are usually conducted in a 3D static manner, which only reflects noise impact at a certain time. Building information modeling (BIM) provides detailed physical and functional characteristics of a facility that can be applied to support the noise simulation on offshore platforms. In this study, attempts have been made to develop a BIM-supported 4D acoustics simulation approach to mitigating the noise impact on maintenance workers of offshore platforms. BIM is utilized to automatically provide required information to facilitate noise simulation setup. 4D acoustics simulation approach is used to obtain the spatio-temporary sound pressure level (SPL) distribution of the noise generated by the functional modules on offshore platforms. Acoustic diffusion equation (ADE) is selected as noise SPL prediction model. To evaluate noise impact on maintenance workers, an equation based on daily noise dose is then newly derived to quantify the noise impact. Optimization algorithm is used to determine the maintenance schedule with the minimum daily noise dose. Finally, optimized maintenance schedule that has considered noise impact is used to update the daily maintenance plan on offshore platforms. An example of a fixed offshore platform with maintenance daily activity information is used to illustrate the proposed BIM-supported 4D acoustics simulation approach. The results show that the developed approach can well mitigate noise impact on maintenance workers on offshore platforms, resulting in health and safety management improvement. | 連結 |