香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Developing a BIM-Based Facility Management Framework for Building Operations Report 06/2017 Zhang Zhongkuang
Xin XIA
Indoor air quality affects human comfort in several aspects such as temperature, humidity, CO2 and CO. With BIM and sensor technologies, the real-time indoor air quality data can be collected by sensors, transmitted and displayed in the BIM model, therefore the building control system can make appropriate adjustments to improve the indoor air quality. For BIM models, the model-based approach increases efficiency within individual organizations and truly shines during coordinated project delivery. Building information modeling can drive time and budget savings for building and infrastructure projects. For sensors, the data gathered is converted to a digital form and is processed at high speed. Sensor technology can store the data in memory, from where it can be retrieved later for processing, analysis and presentation.

In this research, a plugin for grading the indoor air quality was designed, which can grade the indoor air quality at current or a specified past time as “good”, “fair” or “bad” showing in the BIM model. With the grading level, proper regulate and control could be made from the building control system to improve the indoor air quality. This designed plugin was used in a real case of seafront sport center in HKUST. Moreover, to efficiently manage sensors in a building, to reduce the energy consumption thus reduce the budget, linking facility and energy management to human comfort are also necessary and should be completed in the future work.
N.A.
HKUST Developing a Building Information Modeling Framework for Facility Management FYP 06/2017 LUK, Ka Yui
TING, Hok Lam
The sustainability of an infrastructure is of paramount importance to protect the benefits of both clients, engineers and its end-users. Building Information Modelling (BIM) therefore has become a vital tool for facility management (FM) to monitor the lifecycle of all building elements. Numerous of frameworks in the industry, however, are unable to locate and trace the asset information details of the building elements automatically for the asset management(AM) in the building lifecycle, especially the operation and maintenance stage. These existing frameworks highly rely on facility managers to locate the building elements and filter the information from a humongous database and carry out further data analysis for asset management strategies plan. Therefore, developing an integrated BIM framework to integrate the use of Radio Frequency Identification (RFID) technology and a FM software is essential for a more advanced facility management, especially the asset management performance of an infrastructure.

In this research, AM is focused and a BIM model of the HKUST library is established as our targeted infrastructure for framework scenario establishment. Numbers of RFID tags have been installed on various library assets to collect respective RFID elements data. A Structured Query Language (SQL) database has been created to store in MySQL and integrate the data of the RFID tags with a FM software, Archibus. A RFID Asset Management website has been established to filter and visualize the required data. Finally, a BIM-based framework for asset management has been attained. The research framework has been applied to a HKUST Library-based AM scenario and the results have proved its AM functions and reliability in enhancing the AM performance of an infrastructure.
N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2016 LI, Kang
TANG, Chung Hin
Building information modeling (BIM) aims to facilitate information management and collaboration among stakeholders in different domains over the building facility life cycle. In a BIM model, each building component has its properties, information, and semantics. Modifications performed in one view will be reflected in all perspectives. BIM models are increasingly used in the building industry as an object-based information hub for storing, integrating and managing building information in different aspects throughout the design, construction, and maintenance operations. However, the applications of BIM for civil infrastructures are still immature and uncommon. This project aims to develop a BIM-based framework that facilitates the facility operation and management process of civil infrastructure facilities. In this project, the information requirement and facility management process will be studied and summarized. A semantic data model and system framework for infrastructure facility management will then be developed. The developed framework will finally be illustrated and validated in case scenarios. N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2015 LO Tsz Fung
TAM, Siu-hung
There is a global trend of green buildings in recent years. The BEAM Plus green building standard developed by the Hong Kong Green Building Council (HKGBC) in 2009 has certified over 200 projects in Hong Kong. Green buildings have utilized various design features and operation technologies to reduce energy, waste and water consumption, improve indoor environmental quality and increase building performance.

Facilities Management (FM) is the total management of all services that support the core businesses of an organization in a building. Nowadays, the design and structure of buildings are getting increasingly sophisticated and the need for specialization in management and maintaining them at high quality is vital. Facility managers have to acquire, integrate, edit, and update diverse facility information ranging from building elements, data, operational costs, room allocation, contract types, to maintenance. However, FM professionals have to face challenges resulting in cost and time related to productivity, efficiency and effectiveness losses. Building Information Modeling (BIM) seeks to integrate building lifecycle, provide improvements and help to overcome such those challenges.

Thus, the aims of this project is to explore how BIM can contribute to and improve the FM profession and develop a BIM-based framework that facilitates the facility operations and management process of civil infrastructure facilities. To explore the technical feasibility of the proposed approach, It aim the Hong Kong University of Science and Technology Jockey Club Institute for Advance Study (IAS) as a target to implement and test, which is one of the world’s leading centers of research and intellectual inquiry, aiming to drive major advances and discoveries with its inter-disciplinary research locally and worldwide and establish itself as an international centre for excellence. For this purpose, the FM’s key tasks for indoor environmental quality improvement of green building features are identified and evaluated and a BIM model for the IAS building is developed and experimented by the FM tasks. As a result, such simulation helps shaping the vision, direction and policy for future energy and aviation systems.
N.A.
HKUST Developing a Context-Aware Building Information Modeling Framework for Construction Monitoring and Management FYP 06/2017 CHAN, Kei Yiu
LI, Chun Ting
With the global popularization of smartphones, which are equipped with various electronic sensors and hardware, the smartphones can collect useful information, such as location, light intensity, speed from the surroundings almost everywhere and anytime. The instant availability of the useful information has led to the formulation of a novel concept called context-awareness, which is developing computer programs to perform specific functions based on the acquired information. Location-awareness, which focuses only on collecting location information, is one of the future trends for building information modelling (BIM) development. The primary purpose of this project is to incorporate the idea of location-awareness to BIM in construction management and monitoring. To achieve this purpose, this project is objected to accomplish three main objectives, which are locating and analyzing the user current indoor position, acquiring and transferring the information in from BIM models to local devices and establishing the location-aware BIM framework on a viable and convenient platform. Thus, the location-aware BIM framework is developed as a mobile application named as “HKUST Library Helper”. The mobile application is not only equipped with Wi-Fi fingerprinting technology to support indoor localization, but also it is designed to provide different useful functions such as identifying rooms based on user position or by touch, extracting room information and creating and retrieving special notes and tasks for different rooms. N.A.
HKUST Developing a Facility Monitoring and Management Framework for Buildings Based on BIM and Sensor Technologies Report 06/2016 Fehong HE
Jiaying HUANG
Guishan LI
Building Information Modeling (BIM) is a global trend which is gaining significant benefits in facility management. It can reduce cost and time to address building management problems. Currently there is little information on how to realize the benefits from BIM with monitoring the real time state of a building environment.

In this thesis, a sensor based BIM framework is presented for building controlling and management. Building environment, space, equipment and safety information can be captured by unique sensors automatically instead of human detect. We have simulated the sensor installation in a popular BIM software Autodesk Revit, and use HKUST Hall 7 as an example model to perform our platform. We use SQL database to store all the sensor ID because it have a good linkage with BIM model. With the pragmatic sensor management plugin we can realize visualization interface in BIM model to management those sensors and get the specific information. After realize the real time data acquisition, we have researched some relative criteria and build an assessment system for further facility management.
N.A.