资源
香港专上院校所提供之论文/研究刊物
院校 | 题目 | 类型 | 日期 | 作者 | 摘要 | 网页 |
---|---|---|---|---|---|---|
HKUST | Social BIMCloud: A distributed cloud-based BIM platform for object-based lifecycle information exchange | Journal | 03/2015 | Das, M., Cheng, J.C.P., and Kumar, S. | Background The architecture, engineering and construction (AEC) industry lacks a framework for capturing, managing, and exchanging project, product, and social information over the lifecycle of a building. The current tools have various limitations, such as lack of interoperability, slow to transfer huge building model files, and possibility of data inconsistency. Methods In this paper, we present a cloud-based BIM server framework namely Social BIMCloud that facilitates BIM information exchange through dynamic merging and splitting of building models. The data model of Social BIMCloud is based on but not limited to IFC. The data model of Social BIMCloud was further extended to accommodate social interactions, by studying the formal modes of communication in the AEC industry. An object-based approach to capture and manage social interactions in AEC projects through a BIM-based visual user interface was also developed and demonstrated. Results Social BIMCloud addresses the issues of inefficient data transfer speed and data inconsistency in a distributed environment by facilitating the storage and partial exchange of integrated nD BIM models. Data interoperability is facilitated through open BIM standards such as IFC and direct integration with construction software. High performance, scalability, fault tolerance, and cost effectiveness are facilitated through data partitioning, data replication strategies, multi-node structures, and pay-per-use tariff systems, respectively, through a cloud-based NoSQL database. Conclusion The Social BIMCloud framework helps to develop and exchange BIM models, which are rich in project information such as social interactions, cost, and energy analyses. This framework improves the communication efficiency between project participants, leading to better designs and less rework. The information captured by this framework could also be useful to determine important metrics such as industry trends, relationships among project participants, and user requirements. |
连结 |
HKUST | A BIM-based automated site layout planning framework for congested construction sites | Journal | 08/2015 | Kumar, S., and Cheng, J.C.P. | Site layout planning is often performed on construction sites to find the best arrangement of temporary facilities so that transportation distances of on-site personnel and equipment are minimized. It could be achieved by creating dynamic layout models, which capture the changing requirements of construction sites. However, formulating such models is extremely tedious because it requires much manual data input and changes to design and construction plans are manually updated by layout planners. This study presents an automated framework of creating dynamic site layout models by utilizing information from BIM. The A* algorithm is used in conjunction with genetic algorithms to develop an optimization framework that considers the actual travel paths of on-site personnel and equipment. To address the space limitation on site, our model optimizes the dimensions of facilities and also considers interior storage within buildings under construction. A case example is demonstrated to validate this framework and shows a 13.5% reduction in total travel distance compared with conventional methods. | 连结 |
HKUST | A review of the efforts and roles of the public sector for BIM adoption worldwide | Journal | 07/2015 | Cheng, J.C.P., and Lu, Q. | Building Information Modeling (BIM) adoption is spreading through the public sector (including government bodies and non-profit organizations) around the globe in the architecture, engineering and construction (AEC) industry. The public sector plays a key role in supporting and encouraging the adoption of BIM in the industry. Currently there is no comprehensive study on the efforts and roles of the public sector for BIM adoption. In this paper, different kinds of the efforts that the public sector has put for BIM adoption worldwide are reviewed to highlight the successful implementations of BIM and to identify the gaps in some countries. The countries covered in this paper are grouped into four regions - the United States, Europe, Asia, and Australasia. In each region, efforts of the public sector in different countries to BIM implementations including establishment of BIM programs and committees, organization of BIM activities and seminars, setting up of different BIM goals and promises, and preparation of BIM guidelines and standards are described and compared. This paper also identifies six major possible roles of the public sector for BIM adoption. The roles played by the public sector in each selected country are summarized and evaluated. | 连结 |
HKUST | Automatic transformation of different levels of detail in 3D GIS city models in CityGML | Journal | 07/2015 | Deng, Y., and Cheng, J.C.P. | 3D Geographic Information System (GIS) models are increasingly used for planning and analyses on a city level. Defining 3D GIS city models in different levels of detail (LoD) is often needed to browse and handle large models more efficiently. In this paper, a methodology framework for automatic transformation of different LoDs in CityGML is presented and illustrated. A new exterior shell extraction algorithm was developed from the Ray Tracing algorithm for classifying building surfaces as interior or exterior. A transformation framework among each LoD was developed based on the new exterior shell extraction algorithm. The transformation framework also includes an additional LoD called LoD3.5 that the authors proposed in this paper. The new LoD can satisfy the needs of applications which require information about interior rooms while maintaining a small data storage. The results show that the new exterior shell extraction algorithm can help achieve an automatic derivation of LoDs in CityGML. | 连结 |
HKUST | A financial decision making framework for construction projects based on 5D building information modeling (BIM) | Journal | 12/2015 | Lu, Q., Won, J., and Cheng, J.C.P. | Analyzing cash flows and undertaking project financing are important for contractors in managing construction projects. Traditional methods for cash flow analysis are based on the manual integration of time and cost information. However, the manual integration process can be automated by using five-dimensional building information modeling (5D BIM). Previous studies on 5D BIM have focused on estimating cash outflow rather than cash inflow analysis and project financing. This paper proposes a BIM-based methodology framework for cash flow analysis and project financing. The framework considers contract types and retainage to estimate cash inflow, and cash outflow patterns for equipment, manpower, and materials in order to more accurately measure cash outflow. Project financing scenarios can also be evaluated using the framework. Illustrative examples are demonstrated to validate the proposed framework by considering two what-if scenarios. Results show that the framework can help contractors analyze the cash flow and make appropriate decisions for different design and payment scheme alternatives in construction projects. | 连结 |
HKUST | A framework for 3D traffic noise mapping using data from BIM and GIS integration | Journal | 01/2016 | Deng, Y., Cheng, J.C.P., and Anumba, C.J. | Traffic noise is a major health concern for people living in urban environments. Noise mapping can help evaluating the noise level for certain areas in a city. Traditionally, noise mapping is performed in 2D geographic information system (GIS). The use of 3D GIS is also emerging in noise mapping in recent years. However, the current noise-mapping platforms can only conduct noise evaluation for the outdoor environment and the indoor environment separately. In addition, related information about absorption coefficient and transmission loss (TL) in noise calculation is not properly retrieved and is often replaced with a single value. In this research, building information modelling (BIM) and 3D GIS are integrated in order to combine traffic noise evaluation in both outdoor environments and indoor environments in a single platform. In our developed BIM–GIS integration platform, the built environment is represented in a 3D GIS model that contains information at a high level of detail from BIM. With the integration with BIM, the 3D GIS model now has access to detailed indoor features such as interior walls and interior rooms. Noise evaluation could therefore be performed at a room level in the developed platform. Essential parameters such as absorption coefficient and TL can be extracted directly from BIM for noise calculation. The 3D GIS model is connected with detailed BIM so that any changes in the indoor and outdoor features can be reflected to each other. The Italian C.N.R model is modified and applied in the platform to conduct noise calculation. This paper presents the details for the development of the noise-mapping BIM–GIS platform based on ArcGIS. Two use cases were analysed to show the role of such platform in the decision-making process of both urban planning and interior design. | 连结 |