香港专上院校所提供之论文/研究刊物

关键字

以下资料由与建造业议会签署合作备忘录的专上学院提供。

院校

类型

Date: From

To

院校 题目 类型 日期 作者 摘要 网页
HKUST Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text mining techniques Journal 01/2015 Cheng, J.C.P., Deng, Y.C., and Anumba, C. The interoperability between BIM (Building Information Modeling) and 3D GIS (Geographic Information System) can enhance the functionality of both domains. BIM can serve as an information source for 3D GIS, while 3D GIS could provide neighboring information for BIM to perform view analysis, sustainable design and simulations. Data mapping is critical for seamless information sharing between BIM and GIS models. However, given the complexity of todayÕs BIM schemas and GIS schemas, the manual mapping between them is always time consuming and error prone. This paper presents a semi-automatic framework that we have developed to facilitate schema mapping between BIM schemas and GIS schemas using linguistic and text-mining techniques. Industry Foundation Classes (IFC) in the BIM domain and City Geography Markup Language (CityGML) in the GIS domain were used in this paper. Entity names and definitions from both schemas were used as the knowledge corpus, and text-mining techniques such as Cosine Similarity, Market Basket Model, Jaccard Coefficient, term frequency and inverse document frequency were applied to generate mapping candidates. Instance-based manual mapping between IFC and CityGML were used to evaluate the results from the linguistic-based mapping. The results show that our proposed name-to-definition comparison could achieve a high precision and recall. Results using different similarity measures were also compared and discussed. The framework proposed in this paper could serve as a semi-automatic way for schema mapping of other schemas and domains. 连结
HKUST Social BIMCloud: A distributed cloud-based BIM platform for object-based lifecycle information exchange Journal 03/2015 Das, M., Cheng, J.C.P., and Kumar, S. Background
The architecture, engineering and construction (AEC) industry lacks a framework for capturing, managing, and exchanging project, product, and social information over the lifecycle of a building. The current tools have various limitations, such as lack of interoperability, slow to transfer huge building model files, and possibility of data inconsistency.

Methods
In this paper, we present a cloud-based BIM server framework namely Social BIMCloud that facilitates BIM information exchange through dynamic merging and splitting of building models. The data model of Social BIMCloud is based on but not limited to IFC. The data model of Social BIMCloud was further extended to accommodate social interactions, by studying the formal modes of communication in the AEC industry. An object-based approach to capture and manage social interactions in AEC projects through a BIM-based visual user interface was also developed and demonstrated.

Results
Social BIMCloud addresses the issues of inefficient data transfer speed and data inconsistency in a distributed environment by facilitating the storage and partial exchange of integrated nD BIM models. Data interoperability is facilitated through open BIM standards such as IFC and direct integration with construction software. High performance, scalability, fault tolerance, and cost effectiveness are facilitated through data partitioning, data replication strategies, multi-node structures, and pay-per-use tariff systems, respectively, through a cloud-based NoSQL database.

Conclusion
The Social BIMCloud framework helps to develop and exchange BIM models, which are rich in project information such as social interactions, cost, and energy analyses. This framework improves the communication efficiency between project participants, leading to better designs and less rework. The information captured by this framework could also be useful to determine important metrics such as industry trends, relationships among project participants, and user requirements.
连结
HKU Is Building Information Modelling (BIM) a Tool or a Substitute to Quantity Surveyors? Thesis 04/2015 FU Ka Chun -- N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2015 LO Tsz Fung
TAM, Siu-hung
There is a global trend of green buildings in recent years. The BEAM Plus green building standard developed by the Hong Kong Green Building Council (HKGBC) in 2009 has certified over 200 projects in Hong Kong. Green buildings have utilized various design features and operation technologies to reduce energy, waste and water consumption, improve indoor environmental quality and increase building performance.

Facilities Management (FM) is the total management of all services that support the core businesses of an organization in a building. Nowadays, the design and structure of buildings are getting increasingly sophisticated and the need for specialization in management and maintaining them at high quality is vital. Facility managers have to acquire, integrate, edit, and update diverse facility information ranging from building elements, data, operational costs, room allocation, contract types, to maintenance. However, FM professionals have to face challenges resulting in cost and time related to productivity, efficiency and effectiveness losses. Building Information Modeling (BIM) seeks to integrate building lifecycle, provide improvements and help to overcome such those challenges.

Thus, the aims of this project is to explore how BIM can contribute to and improve the FM profession and develop a BIM-based framework that facilitates the facility operations and management process of civil infrastructure facilities. To explore the technical feasibility of the proposed approach, It aim the Hong Kong University of Science and Technology Jockey Club Institute for Advance Study (IAS) as a target to implement and test, which is one of the world’s leading centers of research and intellectual inquiry, aiming to drive major advances and discoveries with its inter-disciplinary research locally and worldwide and establish itself as an international centre for excellence. For this purpose, the FM’s key tasks for indoor environmental quality improvement of green building features are identified and evaluated and a BIM model for the IAS building is developed and experimented by the FM tasks. As a result, such simulation helps shaping the vision, direction and policy for future energy and aviation systems.
N.A.
HKUST Analysis and Evaluation of Green Building Features Using Building Information Modeling FYP 06/2015 LO Lok
Kwok Hoi Ling Helen
The number of green buildings is growing rapidly worldwide and the construction of green building can be facilitated by Building Information Modeling (BIM), which also becomes popular in recent years. At the same time, increasing number of new and current buildings are getting certified as green buildings by energy codes.

The project aims to study the green features of the HKUST Jockey Club Institute for Advanced Study (IAS) building as it is designed to reduce energy consumption with daylighting. Lighting and space cooling are the two major annual electric consumption by while spacing heating is the major annual fuel end use. The energy simulation results reveal that similar simulation engine generates similar results.

Alternative designs are created to further improve the energy saving efficiency of the IAS building and are compared with the original IAS building. The best orientation for the IAS building is to be rotated 150o clockwise from the original position. The building should also have occupancy and daylighting sensors and controls installed. The curtain walls should be replaced by translucent wall panels (U-0.10, SHGC 0.06, Tvis 0.04). The results agrees with the potential energy chart which indicates window glass as the building features that has the greatest energy saving potential. It is recommended that to modify the IAS building with all three aspects to maximize energy reduction.

LEED and BEAM Plus Compliance are checked with alternative designs. Only the case with the IAS building model having translucent wall panels (U-0.10, SHGC 0.06, Tvis 0.04) and the combined case earn LEED EA 1 credits; whereas all cases mentioned above are eligible for BEAM Plus Section 4.1 EU 1 credits.
N.A.
HKUST BIM Application for Construction and Demolition Waste Minimization Report 06/2015 TAO Jiali Nowadays the construction industry is under pressure to explore effective and efficient techniques and tools to decrease its escalating waste production. Many countries have taken initiatives to reduce the construction and demolition waste. However, the current approaches, techniques and tools focus on separate projects onsite and limited effort is invested to put attention on pre-construction waste generation related to supply chain management issues and procurement, design and tender stages.

Therefore this study aims to develop the BIM-based approaches for C&D waste in the aspect of waste estimation, 3R, prefabrication and clash detection. Besides, this study will also demonstrate and validate the developed approaches for C&D waste minimization using example scenarios. All in all, the application of BIM in C&D waste minimization can be better realized. C&D Waste estimation via the quantity takeoff tool and waste index can clearly show the accurate amount of the waste before the commencement of the works. Classifying the different construction material in BIM model and set up suitable C&D waste management planning definitely improve the efficiency of the waste management. Providing accurate information of precast units ahead of time and assisting the supply chain management can be achieved in BIM model. Visual clash detection reduces rework to some extent.
N.A.