香港专上院校所提供之论文/研究刊物

关键字

以下资料由与建造业议会签署合作备忘录的专上学院提供。

院校

类型

Date: From

To

院校 题目 类型 日期 作者 摘要 网页
HKUST Analysis and Evaluation of Indoor Ventilation and Energy Consumption Using Building Information Modeling FYP 06/2017 TSANG, Wing Sum
WONG, Long Yee Mary
YIP, Shing
This project used Building Information Modeling (BIM) and BIM compatible software, Computational Fluid Dynamic (CFD), to analyze the indoor environmental quality of current UG Hall VII building in HKUST under mechanical and natural ventilation. The results obtained from the software analysis were used for evaluating the indoor environment with green building standard BEAM Plus EB Ver. 2 Selective Scheme. Indoor environmental quality analysis and energy analysis on different air-conditioner usage scenarios and modified air-conditioning system were also conducted to investigate whether any modifications could give rise to indoor environment that able to reach BEAM Plus standard while reducing energy consumption. We founded that opening one air-conditioner, with temperature set as 24℃, in only one bedroom in a suite could achieve favourable indoor environment while reducing half of the energy usage on cooling. Also, changing the air-conditioning system from window-type air-conditioners to centralized system could also lower energy consumption on cooling while keeping a comfortable indoor environment. N.A.
HKUST Construction Lift Planning for Prefabricated Units Based on Building Information Modelng and Optimization Techniques FYP 06/2017 LEE, Hoi Yin
LO, Kwong Ching
In recent years, prefabricated construction has been increasingly employed in building projects, especially in vertical extension of existing building. However, current lift planning mainly relies on experience and instinct of site manager, leading to potentially poor lifting schedule that may incur extra time and costs on lifting operations. This project presents a BIM-based lift planning framework for prefabricated modules in vertical extension project that aims to optimize the lifting schedule of prefabricated modules and provide visualization for actual lifting path of the modules. The framework considers three main models: (1) information extraction and geometry simplification model to obtain the module information and simplify the shape of modules, (2) analysis model to calculate the actual lifting path distance of each prefabricated module, and (3) optimization model for the selection of ideal lifting schedule using genetic algorithm (GA). An illustrative example is presented to illustrate and evaluate the proposed framework. The results show that the proposed framework can generate the shortest lifting path for each prefabricated module automatically. The lift planning for prefabricated modules in vertical extension project can be significantly improved by the developed framework. N.A.
HKUST Developing a Building Information Modeling Framework for Facility Management FYP 06/2017 LUK, Ka Yui
TING, Hok Lam
The sustainability of an infrastructure is of paramount importance to protect the benefits of both clients, engineers and its end-users. Building Information Modelling (BIM) therefore has become a vital tool for facility management (FM) to monitor the lifecycle of all building elements. Numerous of frameworks in the industry, however, are unable to locate and trace the asset information details of the building elements automatically for the asset management(AM) in the building lifecycle, especially the operation and maintenance stage. These existing frameworks highly rely on facility managers to locate the building elements and filter the information from a humongous database and carry out further data analysis for asset management strategies plan. Therefore, developing an integrated BIM framework to integrate the use of Radio Frequency Identification (RFID) technology and a FM software is essential for a more advanced facility management, especially the asset management performance of an infrastructure.

In this research, AM is focused and a BIM model of the HKUST library is established as our targeted infrastructure for framework scenario establishment. Numbers of RFID tags have been installed on various library assets to collect respective RFID elements data. A Structured Query Language (SQL) database has been created to store in MySQL and integrate the data of the RFID tags with a FM software, Archibus. A RFID Asset Management website has been established to filter and visualize the required data. Finally, a BIM-based framework for asset management has been attained. The research framework has been applied to a HKUST Library-based AM scenario and the results have proved its AM functions and reliability in enhancing the AM performance of an infrastructure.
N.A.
HKUST Developing a Context-Aware Building Information Modeling Framework for Construction Monitoring and Management FYP 06/2017 CHAN, Kei Yiu
LI, Chun Ting
With the global popularization of smartphones, which are equipped with various electronic sensors and hardware, the smartphones can collect useful information, such as location, light intensity, speed from the surroundings almost everywhere and anytime. The instant availability of the useful information has led to the formulation of a novel concept called context-awareness, which is developing computer programs to perform specific functions based on the acquired information. Location-awareness, which focuses only on collecting location information, is one of the future trends for building information modelling (BIM) development. The primary purpose of this project is to incorporate the idea of location-awareness to BIM in construction management and monitoring. To achieve this purpose, this project is objected to accomplish three main objectives, which are locating and analyzing the user current indoor position, acquiring and transferring the information in from BIM models to local devices and establishing the location-aware BIM framework on a viable and convenient platform. Thus, the location-aware BIM framework is developed as a mobile application named as “HKUST Library Helper”. The mobile application is not only equipped with Wi-Fi fingerprinting technology to support indoor localization, but also it is designed to provide different useful functions such as identifying rooms based on user position or by touch, extracting room information and creating and retrieving special notes and tasks for different rooms. N.A.
HKUST Developing a Building Information Modeling Framework for Infrastructure Facility Management FYP 06/2016 LI, Kang
TANG, Chung Hin
Building information modeling (BIM) aims to facilitate information management and collaboration among stakeholders in different domains over the building facility life cycle. In a BIM model, each building component has its properties, information, and semantics. Modifications performed in one view will be reflected in all perspectives. BIM models are increasingly used in the building industry as an object-based information hub for storing, integrating and managing building information in different aspects throughout the design, construction, and maintenance operations. However, the applications of BIM for civil infrastructures are still immature and uncommon. This project aims to develop a BIM-based framework that facilitates the facility operation and management process of civil infrastructure facilities. In this project, the information requirement and facility management process will be studied and summarized. A semantic data model and system framework for infrastructure facility management will then be developed. The developed framework will finally be illustrated and validated in case scenarios. N.A.
HKUST Analysis and Evaluation of Green Building Features Using Building Information Modeling FYP 06/2016 KEUNG, Wun Ting Iris
WONG, Wing Man
There is a global trend of green buildings in recent years. As of 2011, there are over 10,000 green building projects certified by the LEED (Leadership in Energy and Environmental Design) standard in the United States alone. In Hong Kong, the BEAM Plus green building standard developed by the Hong Kong Green Building Council (HKGBC) in 2009 has certified over 200 projects in Hong Kong. Green buildings utilize various design features and operation technologies to reduce energy and water consumption, improve indoor environmental quality and increase building performance. This project aims to study the common green building features and evaluate them using building information modeling (BIM) and computer simulation techniques. In a BIM model, each building component has its properties, information and semantics, which support sophisticated simulation and analysis under different conditions. In this project, commonly adopted energy saving and indoor environmental quality improvement green building features will be modeled, evaluated, and compared. N.A.