资源
香港专上院校所提供之论文/研究刊物
院校 | 题目 | 类型 | 日期 | 作者 | 摘要 | 网页 |
---|---|---|---|---|---|---|
HKU | Application of information technology in materials logistics in the Hong Kong construction industry | Thesis | 04/2000 | YAN Kwok Wing | -- | N.A. |
HKUST | Automatic transformation of different levels of detail in 3D GIS city models in CityGML | Journal | 07/2015 | Deng, Y., and Cheng, J.C.P. | 3D Geographic Information System (GIS) models are increasingly used for planning and analyses on a city level. Defining 3D GIS city models in different levels of detail (LoD) is often needed to browse and handle large models more efficiently. In this paper, a methodology framework for automatic transformation of different LoDs in CityGML is presented and illustrated. A new exterior shell extraction algorithm was developed from the Ray Tracing algorithm for classifying building surfaces as interior or exterior. A transformation framework among each LoD was developed based on the new exterior shell extraction algorithm. The transformation framework also includes an additional LoD called LoD3.5 that the authors proposed in this paper. The new LoD can satisfy the needs of applications which require information about interior rooms while maintaining a small data storage. The results show that the new exterior shell extraction algorithm can help achieve an automatic derivation of LoDs in CityGML. | 连结 |
HKUST | Developing an evacuation evaluation model for offshore oil and gas platforms using BIM and agent-based model | Journal | 02/2018 | Cheng, J.C.P., Tan, Y., Song, Y., Mei, Z., Gan, V.J.L., and Wang, X. | Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering the demanding environment where such platforms are located and the complicated topsides structure that the platforms have. Conducting evacuation planning on OOGPs is challenging. Computational tools are considered as a good way to plan evacuation by emergency simulation. However, the complex structure of OOGPs and various evacuation behaviors can weaken the advantages of computational simulation. Therefore, this study develops a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) technology and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model the simulation environment by integrating matrix model and network model. In addition to essential attributes, environment sensing and dynamic escape path planning functions are developed and assigned to agents in order to improve simulation performance. Total evacuation time for all agents on an offshore platform is used to evaluate the evacuation performance of each simulation. An example OOGP BIM topsides with different emergency scenarios is used to illustrate the developed evacuation evaluation model. The results show that the developed model can accurately simulate evacuation and improve evacuation performance on OOGPs. The developed model is also applicable to other industries such as the architecture, engineering, and construction industry, where there is an increasing demand for evacuation planning and simulation. | 连结 |
HKUST | Optimization of HVAC Systems for Improved Indoor Air Quality and Occupant Thermal Comfort Using a BIM-Supported Computational Approach | FYP | 06/2020 | CHEUNG, Hing SO, Wai Hin |
Air pollution problems are getting more serious and rapid in recent years. Its impacts affect us greatly in many aspects like climate changes, causing health problems and the consequences of increasing the economic burden. In 2016, there is an estimated 4.2 million premature deaths caused by bad air quality in the world. Instead of the long-term exposure effects, short term exposure to air pollutants such as PM10 and NOx will also be irritant to people which cause sneezing, headaches and dizziness, etc. Therefore, there is an urgent need to seek methods to alleviate the problems. However, the effects of air pollutions to the people cannot be determined simply since the amount of air pollutants will be different in different locations and time. To tackle this problem, it is suggested to analyze the data provided by the real-time estimation of people’s exposure to the air pollutants. Based on a given indoor environment with different HVAC components, the indoor air quality can be simulated by the aid of Building Information Technology (BIM) and Computational Fluid Dynamics (CFD). Hence, the simulation result can be interpreted and used for the optimization of HVAC systems for a better indoor air quality (IAQ). This report presents the research conducted on the application of BIM to HVAC systems for optimizing the IAQ. Analysis of the application of BIM and the detailed operation of HVAC systems to explore how BIM-supported computational approach can optimize HVAC systems for improved indoor and thermal occupant comfort (Aktiengesellschaft). TAL building in Jordan was selected as the target area of this report and act as an example. The site visit of the building is conducted and its daily operation and building systems are analyzed and evaluated. After that, building of BIM model of TAL building has started. With the usage of Autodesk Computational Fluid Dynamics (CFD), we tried to simulate the actual indoor environment of TAL building. Before running the simulation, the calculating of different boundary conditions of the model and the construction of BIM model in CFD are conducted. The process of them will be described in this report. After reporting the progress, the result of simulation will be shown and further analysis and evaluation will be conducted through the interpretation of the simulation results. |
N.A. |
HKUST | BIM-based framework for automatic scheduling of facility maintenance work orders | Journal | 03/2018 | Chen, W., Chen, K., Cheng, J.C.P., Wang, Q., and Gan, V.J.L. | Although more than 65% of the total cost in facility management (FM) comes from facility maintenance management (FMM), there is a lack of efficient maintenance strategies and right decision making approaches to reduce FMM costs. Building information modeling (BIM) has been developed as a potential technology for FMM in buildings. This study proposes an FMM framework based on BIM and facility management systems (FMSs), which can provide automatic scheduling of maintenance work orders (MWOs) to enhance good decision making in FMM. In this framework, data are mapped between BIM and FMSs according to the Industry Foundation Classes (IFC) extension of maintenance tasks and MWO information in order to achieve data integration. After bi-directional data transmission between the BIM models and FMSs, work order information is visualized in BIM via API to identify components that have failed. Second, geometric and semantic information of the failure components is extracted from the BIM models to calculate the sub-optimal maintenance path in the BIM environment. Third, the MWO schedule is automatically generated using a modified Dijkstra algorithm that considers four factors, namely, problem type, emergency level, distance among components, and location. Illustrative examples are given in the paper to validate the feasibility and effectiveness of the proposed framework in indoor and outdoor 3D environments. | 连结 |
HKUST | A financial decision making framework for construction projects based on 5D building information modeling (BIM) | Journal | 12/2015 | Lu, Q., Won, J., and Cheng, J.C.P. | Analyzing cash flows and undertaking project financing are important for contractors in managing construction projects. Traditional methods for cash flow analysis are based on the manual integration of time and cost information. However, the manual integration process can be automated by using five-dimensional building information modeling (5D BIM). Previous studies on 5D BIM have focused on estimating cash outflow rather than cash inflow analysis and project financing. This paper proposes a BIM-based methodology framework for cash flow analysis and project financing. The framework considers contract types and retainage to estimate cash inflow, and cash outflow patterns for equipment, manpower, and materials in order to more accurately measure cash outflow. Project financing scenarios can also be evaluated using the framework. Illustrative examples are demonstrated to validate the proposed framework by considering two what-if scenarios. Results show that the framework can help contractors analyze the cash flow and make appropriate decisions for different design and payment scheme alternatives in construction projects. | 连结 |