资源
香港专上院校所提供之论文/研究刊物
院校 | 题目 | 类型 | 日期 | 作者 | 摘要 | 网页 |
---|---|---|---|---|---|---|
HKUST | Optimization of HVAC Systems for Improved Indoor Air Quality and Occupant Thermal Comfort Using a BIM-Supported Computational Approach | FYP | 06/2020 | CHEUNG, Hing SO, Wai Hin |
Air pollution problems are getting more serious and rapid in recent years. Its impacts affect us greatly in many aspects like climate changes, causing health problems and the consequences of increasing the economic burden. In 2016, there is an estimated 4.2 million premature deaths caused by bad air quality in the world. Instead of the long-term exposure effects, short term exposure to air pollutants such as PM10 and NOx will also be irritant to people which cause sneezing, headaches and dizziness, etc. Therefore, there is an urgent need to seek methods to alleviate the problems. However, the effects of air pollutions to the people cannot be determined simply since the amount of air pollutants will be different in different locations and time. To tackle this problem, it is suggested to analyze the data provided by the real-time estimation of people’s exposure to the air pollutants. Based on a given indoor environment with different HVAC components, the indoor air quality can be simulated by the aid of Building Information Technology (BIM) and Computational Fluid Dynamics (CFD). Hence, the simulation result can be interpreted and used for the optimization of HVAC systems for a better indoor air quality (IAQ). This report presents the research conducted on the application of BIM to HVAC systems for optimizing the IAQ. Analysis of the application of BIM and the detailed operation of HVAC systems to explore how BIM-supported computational approach can optimize HVAC systems for improved indoor and thermal occupant comfort (Aktiengesellschaft). TAL building in Jordan was selected as the target area of this report and act as an example. The site visit of the building is conducted and its daily operation and building systems are analyzed and evaluated. After that, building of BIM model of TAL building has started. With the usage of Autodesk Computational Fluid Dynamics (CFD), we tried to simulate the actual indoor environment of TAL building. Before running the simulation, the calculating of different boundary conditions of the model and the construction of BIM model in CFD are conducted. The process of them will be described in this report. After reporting the progress, the result of simulation will be shown and further analysis and evaluation will be conducted through the interpretation of the simulation results. |
N.A. |
HKUST | Risk Management in BIM Projects | Report | 06/2019 | CHEUNG Kai Sum Hudson Shane Syen Ee KOK |
Building Information Modeling (BIM) is claimed to be as the future trend of the Architectural, Engineering and Construction (AEC) industry and a way to address the issues of AEC. A BIM model can be adopted in different stages of project’s life circle and result in better quality, but less time and cost consumed. Although quality, cost and time are improved by adopting BIM, risk is one of the critical problems in the adoption of BIM. This study is based on conducted surveys and literature research. In this study, risk factors related to BIM adoption were identified and prioritized based on the results of a questionnaire survey distributed to architects, engineering consultants, academics, and construction companies in the AEC industry, followed by a series of discussion on the major risk factors to provide better understanding. The sources were analyzed and used to explain and identify the main risk of BIM related issues. 14 sub-factors of legal risk will be studied and gathered into four big divisions. | N.A. |
HKUST | Developing an evacuation evaluation model for offshore oil and gas platforms using BIM and agent-based model | Journal | 02/2018 | Cheng, J.C.P., Tan, Y., Song, Y., Mei, Z., Gan, V.J.L., and Wang, X. | Accidents on offshore oil and gas platforms (OOGPs) usually cause serious fatalities and financial losses considering the demanding environment where such platforms are located and the complicated topsides structure that the platforms have. Conducting evacuation planning on OOGPs is challenging. Computational tools are considered as a good way to plan evacuation by emergency simulation. However, the complex structure of OOGPs and various evacuation behaviors can weaken the advantages of computational simulation. Therefore, this study develops a simulation model for OOGPs to evaluate different evacuation plans to improve evacuation performance by integrating building information modeling (BIM) technology and agent-based model (ABM). The developed model consists of four parts: evacuation model input, simulation environment modeling, agent definition, and simulation and comparison. Necessary platform information is extracted from BIM and then used to model the simulation environment by integrating matrix model and network model. In addition to essential attributes, environment sensing and dynamic escape path planning functions are developed and assigned to agents in order to improve simulation performance. Total evacuation time for all agents on an offshore platform is used to evaluate the evacuation performance of each simulation. An example OOGP BIM topsides with different emergency scenarios is used to illustrate the developed evacuation evaluation model. The results show that the developed model can accurately simulate evacuation and improve evacuation performance on OOGPs. The developed model is also applicable to other industries such as the architecture, engineering, and construction industry, where there is an increasing demand for evacuation planning and simulation. | 连结 |
HKUST | A semi-automated approach to generate 4D/5D BIM models for evaluating different offshore oil and gas platform decommissioning options | Journal | 07/2017 | Cheng, J.C.P., Tan, Y., Song, Y., Liu, X., and Wang, X. | Background Offshore oil and gas platforms generally have a lifetime of 30 to 40 years, and platform decommissioning is a major issue because many of the existing offshore oil and gas platforms are reaching the end of their service life. There are many possible options for decommissioning offshore oil and gas platforms, and each decommissioning option can be implemented using different methods and technologies. Therefore, it is necessary to have a clear understanding and in-depth evaluation of each decommissioning option before commencing platform decommissioning. 4D and 5D building information modeling (BIM) has been commonly used in the building industry to analyze constructability and to evaluate different construction or demolition plans. However, application of BIM in the oil and gas industry, especially for the platform decommissioning process, is still limited. Methods This paper suggests and demonstrates the application of 4D and 5D BIM technology to simulate various methodologies to realize various selected offshore platform decommissioning options, thereby visualizing and evaluating different options, considering both the time and resources required for decommissioning process. One hundred and seventy-seven offshore platform decommissioning options are summarized in this paper. A new approach to create multiple 4D/5D BIM models in a semi-automated manner for evaluating various scenario options of OOGP decommissioning was proposed to reduce the model creation time as current way of 4D/5D BIM model creation for each OOGP decommissioning option is time consuming. Results In the proposed approach, an OOGP BIM model relationship database that contains possible 4D/5D BIM model relationships (i.e. schedules for different decommissioning methods) for different parts of an OOGP was generated. Different OOGP decommissioning options can be simulated and visualized with 4D/5D BIM models created by automatically matching schedules, resources, cost information and 3D BIM models. This paper also presents an illustrative example of the proposed approach, which simulates and evaluates two decommissioning options of a fixed jacket platform, namely Rig-to-Reef and Removal-to-Shore. As compared to the traditional approach of 4D/5D BIM model generation, the proposed semi-automated approach reduces the model generation time by 58.8% in the illustrative example. Conclusions The proposed approach of semi-automated 4D/5D BIM model creation can help understand the implication of different decommissioning options as well as applied methods, detecting potential lifting clashes, and reducing 4D/5D BIM model creation time, leading to better planning and execution for the decommissioning of offshore oil and gas platforms. In addition, with the proposed semi-automated approach, the 4D/5D BIM model can be generated in a more efficient manner. |
连结 |
HKUST | Analytical review and evaluation of civil information modelling (CIM) | Journal | 04/2016 | Cheng, J.C.P., Lu, Q., and Deng, Y. | Building information modeling (BIM) has been widely adopted in the building industry. However, the use of BIM in civil infrastructure facilities, sometimes referred to as civil information modeling (CIM) has been slow in its application. Industry and academia are increasingly putting effort into CIM study and implementation, but so far there has been no comprehensive review of their effort in this regard. This paper presents a framework to evaluate the current practices of CIM adoption for various civil infrastructure facilities. In this study, civil infrastructure facilities were divided into nine categories for evaluation and the effort with regard to CIM adoption for each civil infrastructure category was evaluated in six aspects. Based on the evaluation and comparison results of 171 case studies and 62 academic papers on CIM, research gaps were identified and recommendations were made. For example, the findings show that data schema development for civil infrastructure facilities other than bridges, roads, and tunnels are lacking. The results and research gaps revealed by this study are useful for both researchers and practitioners. | 连结 |
HKUST | Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text mining techniques | Journal | 01/2015 | Cheng, J.C.P., Deng, Y.C., and Anumba, C. | The interoperability between BIM (Building Information Modeling) and 3D GIS (Geographic Information System) can enhance the functionality of both domains. BIM can serve as an information source for 3D GIS, while 3D GIS could provide neighboring information for BIM to perform view analysis, sustainable design and simulations. Data mapping is critical for seamless information sharing between BIM and GIS models. However, given the complexity of todayÕs BIM schemas and GIS schemas, the manual mapping between them is always time consuming and error prone. This paper presents a semi-automatic framework that we have developed to facilitate schema mapping between BIM schemas and GIS schemas using linguistic and text-mining techniques. Industry Foundation Classes (IFC) in the BIM domain and City Geography Markup Language (CityGML) in the GIS domain were used in this paper. Entity names and definitions from both schemas were used as the knowledge corpus, and text-mining techniques such as Cosine Similarity, Market Basket Model, Jaccard Coefficient, term frequency and inverse document frequency were applied to generate mapping candidates. Instance-based manual mapping between IFC and CityGML were used to evaluate the results from the linguistic-based mapping. The results show that our proposed name-to-definition comparison could achieve a high precision and recall. Results using different similarity measures were also compared and discussed. The framework proposed in this paper could serve as a semi-automatic way for schema mapping of other schemas and domains. | 连结 |