香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Developing a Building Information Modeling Framework for Facility Management FYP 06/2017 LUK, Ka Yui
TING, Hok Lam
The sustainability of an infrastructure is of paramount importance to protect the benefits of both clients, engineers and its end-users. Building Information Modelling (BIM) therefore has become a vital tool for facility management (FM) to monitor the lifecycle of all building elements. Numerous of frameworks in the industry, however, are unable to locate and trace the asset information details of the building elements automatically for the asset management(AM) in the building lifecycle, especially the operation and maintenance stage. These existing frameworks highly rely on facility managers to locate the building elements and filter the information from a humongous database and carry out further data analysis for asset management strategies plan. Therefore, developing an integrated BIM framework to integrate the use of Radio Frequency Identification (RFID) technology and a FM software is essential for a more advanced facility management, especially the asset management performance of an infrastructure.

In this research, AM is focused and a BIM model of the HKUST library is established as our targeted infrastructure for framework scenario establishment. Numbers of RFID tags have been installed on various library assets to collect respective RFID elements data. A Structured Query Language (SQL) database has been created to store in MySQL and integrate the data of the RFID tags with a FM software, Archibus. A RFID Asset Management website has been established to filter and visualize the required data. Finally, a BIM-based framework for asset management has been attained. The research framework has been applied to a HKUST Library-based AM scenario and the results have proved its AM functions and reliability in enhancing the AM performance of an infrastructure.
N.A.
HKUST Risk Management in BIM Projects Report 06/2020 SIO Wai Lam
CHEONG Ka Yi
The objectives of the project are to identify the risks with high risk level and mitigation with higher effectiveness in BIM industry. The survey was conducted to collect the data of risks and mitigations adopted by different groups of people. Overall analysis, by-group analysis and cross-group analysis were performed.

Thus, the risks were analyzed and discussed with two approaches - level of consequence and level of probability. The level of risk was identified combining these two approaches. The assumption and resolution of identified risks were discussed. Mitigation strategies with higher appropriateness were identified and relevant comments were made.

It is found that the level of risk of C6 (Poor participation / contribution from project team in BIM adoption) and M1 (Lack of adequate expertise in BIM) are extreme, and are very high for risk T6 (Design conflict / clashes in BIM was not revealed / unresolved), C1 (Unclear requirements (e.g. EIR / AIR / contract) of BIM uses and specifications), C2 (Unclear roles, responsibility and liability in BIM implementation). As for mitigation strategy, it is found that mitigation #1 (Clear Employer’s Information Requirement) and #11 (BIM Education for Project Team) were mitigation strategies with the 1st and 2nd ranking in appropriateness/effectiveness. Mitigation can minimize risk C6, and mitigation #11 helps to mitigate risk M1.
N.A.
HKUST Analysis and Evaluation of Green Building Features Using Building Information Modeling FYP 06/2015 LO Lok
Kwok Hoi Ling Helen
The number of green buildings is growing rapidly worldwide and the construction of green building can be facilitated by Building Information Modeling (BIM), which also becomes popular in recent years. At the same time, increasing number of new and current buildings are getting certified as green buildings by energy codes.

The project aims to study the green features of the HKUST Jockey Club Institute for Advanced Study (IAS) building as it is designed to reduce energy consumption with daylighting. Lighting and space cooling are the two major annual electric consumption by while spacing heating is the major annual fuel end use. The energy simulation results reveal that similar simulation engine generates similar results.

Alternative designs are created to further improve the energy saving efficiency of the IAS building and are compared with the original IAS building. The best orientation for the IAS building is to be rotated 150o clockwise from the original position. The building should also have occupancy and daylighting sensors and controls installed. The curtain walls should be replaced by translucent wall panels (U-0.10, SHGC 0.06, Tvis 0.04). The results agrees with the potential energy chart which indicates window glass as the building features that has the greatest energy saving potential. It is recommended that to modify the IAS building with all three aspects to maximize energy reduction.

LEED and BEAM Plus Compliance are checked with alternative designs. Only the case with the IAS building model having translucent wall panels (U-0.10, SHGC 0.06, Tvis 0.04) and the combined case earn LEED EA 1 credits; whereas all cases mentioned above are eligible for BEAM Plus Section 4.1 EU 1 credits.
N.A.
HKUST Mapping BIM schema and 3D GIS schema semi-automatically utilizing linguistic and text mining techniques Journal 01/2015 Cheng, J.C.P., Deng, Y.C., and Anumba, C. The interoperability between BIM (Building Information Modeling) and 3D GIS (Geographic Information System) can enhance the functionality of both domains. BIM can serve as an information source for 3D GIS, while 3D GIS could provide neighboring information for BIM to perform view analysis, sustainable design and simulations. Data mapping is critical for seamless information sharing between BIM and GIS models. However, given the complexity of todayÕs BIM schemas and GIS schemas, the manual mapping between them is always time consuming and error prone. This paper presents a semi-automatic framework that we have developed to facilitate schema mapping between BIM schemas and GIS schemas using linguistic and text-mining techniques. Industry Foundation Classes (IFC) in the BIM domain and City Geography Markup Language (CityGML) in the GIS domain were used in this paper. Entity names and definitions from both schemas were used as the knowledge corpus, and text-mining techniques such as Cosine Similarity, Market Basket Model, Jaccard Coefficient, term frequency and inverse document frequency were applied to generate mapping candidates. Instance-based manual mapping between IFC and CityGML were used to evaluate the results from the linguistic-based mapping. The results show that our proposed name-to-definition comparison could achieve a high precision and recall. Results using different similarity measures were also compared and discussed. The framework proposed in this paper could serve as a semi-automatic way for schema mapping of other schemas and domains. 連結
HKUST Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective Journal 12/2017 Song, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J.C.P., et al. The integration of building information modelling (BIM) and geographic information system (GIS) in construction management is a new and fast developing trend in recent years, from research to industrial practice. BIM has advantages on rich geometric and semantic information through the building life cycle, while GIS is a broad field covering geovisualization-based decision making and geospatial modelling. However, most current studies of BIM-GIS integration focus on the integration techniques but lack theories and methods for further data analysis and mathematic modelling. This paper reviews the applications and discusses future trends of BIM-GIS integration in the architecture, engineering and construction (AEC) industry based on the studies of 96 high-quality research articles from a spatio-temporal statistical perspective. The analysis of these applications helps reveal the evolution progress of BIM-GIS integration. Results show that the utilization of BIM-GIS integration in the AEC industry requires systematic theories beyond integration technologies and deep applications of mathematical modeling methods, including spatio-temporal statistical modeling in GIS and 4D/nD BIM simulation and management. Opportunities of BIM-GIS integration are outlined as three hypotheses in the AEC industry for future research on the in-depth integration of BIM and GIS. BIM-GIS integration hypotheses enable more comprehensive applications through the life cycle of AEC projects. 連結
HKUST A state-of-the-art review on the integration of building information modelling (BIM) and geographic information system (GIS) Journal 02/2017 Liu, X., Wang, X., Wright, G., Cheng, J.C.P., Li, X., and Liu, R. The integration of Building Information Modeling (BIM) and Geographic Information System (GIS) has been identified as a promising but challenging topic to transform information towards the generation of knowledge and intelligence. Achievement of integrating these two concepts and enabling technologies will have a significant impact on solving problems in the civil, building and infrastructure sectors. However, since GIS and BIM were originally developed for different purposes, numerous challenges are being encountered for the integration. To better understand these two different domains, this paper reviews the development and dissimilarities of GIS and BIM, the existing integration methods, and investigates their potential in various applications. This study shows that the integration methods are developed for various reasons and aim to solve different problems. The parameters influencing the choice can be summarized and named as “EEEF” criteria: effectiveness, extensibility, effort, and flexibility. Compared with other methods, semantic web technologies provide a promising and generalized integration solution. However, the biggest challenges of this method are the large efforts required at early stage and the isolated development of ontologies within one particular domain. The isolation problem also applies to other methods. Therefore, openness is the key of the success of BIM and GIS integration. 連結