香港專上院校所提供之論文/研究刊物

關鍵字

以下資料由與建造業議會簽署合作備忘錄的專上學院提供。

院校

類型

Date: From

To

院校 題目 類型 日期 作者 摘要 網頁
HKUST Trends and opportunities of BIM-GIS integration in the architecture, engineering and construction industry: A review from a spatio-temporal statistical perspective Journal 12/2017 Song, Y., Wang, X., Tan, Y., Wu, P., Sutrisna, M., Cheng, J.C.P., et al. The integration of building information modelling (BIM) and geographic information system (GIS) in construction management is a new and fast developing trend in recent years, from research to industrial practice. BIM has advantages on rich geometric and semantic information through the building life cycle, while GIS is a broad field covering geovisualization-based decision making and geospatial modelling. However, most current studies of BIM-GIS integration focus on the integration techniques but lack theories and methods for further data analysis and mathematic modelling. This paper reviews the applications and discusses future trends of BIM-GIS integration in the architecture, engineering and construction (AEC) industry based on the studies of 96 high-quality research articles from a spatio-temporal statistical perspective. The analysis of these applications helps reveal the evolution progress of BIM-GIS integration. Results show that the utilization of BIM-GIS integration in the AEC industry requires systematic theories beyond integration technologies and deep applications of mathematical modeling methods, including spatio-temporal statistical modeling in GIS and 4D/nD BIM simulation and management. Opportunities of BIM-GIS integration are outlined as three hypotheses in the AEC industry for future research on the in-depth integration of BIM and GIS. BIM-GIS integration hypotheses enable more comprehensive applications through the life cycle of AEC projects. 連結
HKUST A BIM-based Framework for Site Layout Optimization and Material Logistics Planning on Congested Construction Sites Thesis 08/2015 Srinath KUMAR Urban construction projects are characterized by the lack of available space on construction sites. Due to the confined nature of such sites, construction materials, equipment and manpower must be managed within the same area, leading to frequent conflicts. As a result, the construction site layout and material logistics plans should be carefully coordinated to ensure a seamless flow of materials, equipment and labor. Existing studies focus on developing systems to address construction site layout planning (CSLP) and material logistics planning (MLP). However, such systems fail to address the mutual impacts and inter-dependencies between the site layout and material logistics plans. Furthermore, existing systems suffer from a lack of automation and inability to address construction delays. Therefore, this research aims to develop a framework for planning the site layout and material logistics on construction sites making use of building information modeling (BIM) technology. BIM has been used in the construction industry for over a decade, but its use in construction planning is still limited to clash detection and 4D simulation. BIM models however, are rich information sources and can be used for construction site layout and material logistics planning as well.

This research presents an automated CSLP framework and a MLP framework that are developed based on BIM technology. The first framework utilizes information stored in BIM models to estimate the size, type and number of temporary facilities required by a construction project during different time intervals. By leveraging the functionality offered by the Autodesk Revit application programming interface (API), several of the computations are automated, significantly reducing manual effort. The second framework is designed to integrate material quantity information from BIM models with construction progress data and material delivery information. This framework coordinates material logistics along with the site layout, giving special emphasis on responding to construction delays. The two frameworks together can be used to facilitate CSLP and MLP on congested construction sites.
N.A.
HKUST Developing a BIM- and GIS-based Facility Management Framework for Underground Utilities Report 06/2017 Starry Xing LI
Liu YANG
Nowadays there is a trend of integrating Building Information Modeling (BIM) and Geographic Information System (GIS) to develop the construction projects, including the projects of underground utilities. Compared with BIM and GIS, traditional utility management has plenty of limitations. Traditional utility management keeps 2D CAD drawings, which are separated by utility type and lack of surrounding information. Besides, it is difficult to find the specific utility pipe in 2D drawings under special situation. The working sequence arrangement for those pipes are sometimes not effective.

This study aims to improve underground utility management in Hong Kong by using ArcGIS. The improvements consist of 3D visualization, querying and working sequence arrangement. 3D visualization of underground pipes and geological layers is created with reference to relevant Hong Kong standards and researches. Three cases are described to demonstrate the practical application of querying function. Working sequence of project in case 3 is analyzed through Excel.
N.A.
HKUST BIM-supported 4D acoustics simulation approach to mitigating noise impact on maintenance workers on offshore oil and gas platforms Journal 12/2018 Tan, Y., Fang, Y., Zhou, T., Gan, V.J.L., and Cheng, J.C.P. Maintenance workers on offshore platforms are usually exposed to a high level of noise from the working environment as most of the daily operations of oil and gas process machines generate noise over 85 dBA, causing substantial health and safety issues. Avoiding exposure of workers to the modules that generate high sound power during maintenance activities can significantly mitigate the noise impact on human health and safety. Noise simulation and noise mapping methodologies can be used to evaluate and quantify the noise impact on offshore platforms. However, limited digital information of offshore platforms makes noise simulation setup challenging as modules on topsides have a high level of details. In addition, current noise mapping studies are usually conducted in a 3D static manner, which only reflects noise impact at a certain time. Building information modeling (BIM) provides detailed physical and functional characteristics of a facility that can be applied to support the noise simulation on offshore platforms. In this study, attempts have been made to develop a BIM-supported 4D acoustics simulation approach to mitigating the noise impact on maintenance workers of offshore platforms. BIM is utilized to automatically provide required information to facilitate noise simulation setup. 4D acoustics simulation approach is used to obtain the spatio-temporary sound pressure level (SPL) distribution of the noise generated by the functional modules on offshore platforms. Acoustic diffusion equation (ADE) is selected as noise SPL prediction model. To evaluate noise impact on maintenance workers, an equation based on daily noise dose is then newly derived to quantify the noise impact. Optimization algorithm is used to determine the maintenance schedule with the minimum daily noise dose. Finally, optimized maintenance schedule that has considered noise impact is used to update the daily maintenance plan on offshore platforms. An example of a fixed offshore platform with maintenance daily activity information is used to illustrate the proposed BIM-supported 4D acoustics simulation approach. The results show that the developed approach can well mitigate noise impact on maintenance workers on offshore platforms, resulting in health and safety management improvement. 連結
HKUST A BIM-based framework for lift planning in topsides disassembly of offshore oil and gas platforms Journal 03/2017 Tan, Y., Song, Y., Liu, X., Wang, X., and Cheng, J.C.P. Offshore oil and gas platforms (OOGPs) usually have a lifetime of 30–40 years. An increasing number of OOGPs across the world will be retired and decommissioned in the coming decade. Therefore, a safe and efficient approach in planning the disassembly of the topsides of OOGPs is required. One commonly applied disassembly method is reverse installation, which moves the OOGP modules from the platform deck to a heavy lift vessel (HLV) in reverse order of their installation. Considering the high risk and cost of working offshore, shortening the lift time is crucial. In contrast to the traditional experience-driven lift operations, this paper describes minimizing the lift path for each OOGP module during disassembly, leveraging building information modeling (BIM) technology and an improved A* algorithm. BIM models provide accurate component-based geometric and semantic information that can be used for planning and optimization. However, there has been no previous study on the use of BIM for offshore disassembly. Industry Foundation Classes (IFC), which is a neutral data model of BIM, is used in this study to represent OOGP models. In particular, the IfcBuildingElementProxy entity is used to represent the OOGP components, and the information in IfcBuildingElementProxy is automatically extracted to obtain the location and dimension information of each OOGP module. Then, for a given layout of modules on the removal vessel, the lift path and removal sequence of different modules, with the shortest lift path distance, are obtained. The lift path distance is calculated using the A* algorithm, which has been widely applied in 2D environments and is modified in this study to suit the 3D environment. Finally, the genetic algorithm (GA) technique is applied to optimize the layout plan on the removal vessel by minimizing the total lift path distance. The developed BIM-based framework is illustrated and evaluated through an illustrative example. The results show that the proposed framework can generate and visualize the shortest lift path for each OOGP module directly and automatically, and significantly improve the efficiency of OOGP disassembly. 連結
HKUST Optimizing lift operations and vessel transport schedules for disassembly of multiple offshore platforms using BIM and GIS Journal 06/2018 Tan, Y., Song, Y., Zhu, J., Long, Q., Wang, X., and Cheng, J.C.P. As the coming decades will witness a big trend in the decommissioning of offshore platforms, simultaneously disassembling topsides of multiple offshore platforms is getting increasingly common. Considering high risk and cost of offshore operations, module lift planning among multiple offshore platforms with transport vessels is required to be carefully conducted. The lift planning usually contains two main parts: module layout on vessels planning and vessel transport schedules arrangement. In contrast to the current experience-driven module lift planning, this paper formulates the lift planning optimization problem and develops a web system integrating building information modeling (BIM) and geographical information system (GIS) to efficiently disassemble topsides for multiple offshore platforms. BIM provides detailed information required for planning module layout on vessels and GIS contains the management and analysis of geospatial information for the vessel transport schedule arrangement. As for module layout optimization, three heuristic algorithms, namely genetic algorithm (GA), particle swarm optimization (PSO), and firefly algorithm (FA) are implemented and compared to obtain the module layout with the minimum total lift time. While for vessel transport schedule, graph search technique is integrated with a developed schedule clash detection function to obtain the transport schedule with the minimum sailing time. The proposed optimization algorithms and techniques are integrated into a developed BIM/GIS-based web system. An example of three offshore platforms with eighteen modules in total is used to illustrate the developed system. Results show that the developed system can significantly improve the efficiency of lift planning in multiple topsides disassembly. The developed BIM/GIS-based web system is also effective and practical in the resource allocation and task assignment among multiple locations, such as construction sites, buildings, and even cities. 連結