FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong

Keyword

Below Information is provided by the Higher Insitutions signed MoU with CIC.

Institution

Type

Date: From

To

Institution Title Type Date Author(s) Abstract Link
HKUST Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings Journal -- Gan, V.J.L., Wong, H.K., Tse, K.T., Cheng, J.C.P., Lo, I.M.C., and Chan, C.M. Buildings consume 40% of global energy, in which residential buildings account for a significant proportion of the total energy used. Previous studies have attempted to optimize the layout plan of residential buildings for minimizing the total energy usage, mainly focusing on low-rise houses of a regular shape and having a limited number of design variables. However, layout design for high-rise residential buildings involves the complicated interaction among a large number of design variables (e.g., different types of flats with varying configurations) under practical design constraints. The number of possible solutions may increase exponentially which calls for new optimization strategies. Therefore, this study aims to develop an energy performance-based optimization approach to identify the most energy-efficient layout plan design for high-rise residential buildings. A simulation-based optimization method applying the evolutionary genetic algorithm (GA) is developed to systematically explore the best layout design for maximizing the building energy efficiency. In an illustrative example, the proposed optimization approach is applied to generate the layout plan for a 40-storey public housing in Hong Kong. The results indicate that GA attempts to maximize the use of natural-occurring energy sources (e.g., wind-driven natural ventilation and sunlight) for minimizing 30–40% of the total energy consumption associated with air-conditioning and lighting. The optimization approach provides a decision support basis for achieving substantial energy conservation in high-rise residential buildings, thereby contributing to a sustainable built environment. Link
HKUST Incorporating Project Management Techniques in Building Information Modeling Projects Report 06/2017 Hao WU
Vincent Cheuk Hang TSE
Chris Ho
Building information modeling (BIM), which is becoming widely adopted by the construction industry for its superior efficiency and conveniences. However, due to great differences distinguished by conventional project construction process, traditional construction system cannot be perfectly exploited in BIM projects. Therefore, developing adaptive project management techniques are significantly essential to facilitate the BIM project implementation in the future. In this study, contractual framework, project delivery approaches and information management standard are studied. Based on the existing standards and feasible delivery and information exchange methods, comparisons and suggestions are given to improve BIM project management level from both technical and legal perspectives. In addition, potential BIM related claims with case study are also explored in this paper. Refer to the content investigated, some preliminary conclusions and recommendations are given for the purpose to achieve higher BIM project quality. N.A.
HKUST As-built BIM Model Verification Through Field Inspection and Laser Scanning: A Comparative Study Report 06/2020 HUANG, Cong
ZHOU Haoran
LIU Hao
BIM model is a prerequisite for the Operation and Maintenance (O&M) of sustainable buildings. Only after having a reliable BIM model can start O&M related work, such as space management and energy management, all these works needs to confirm the accuracy of the BIM model. In this project, the author conducted a verify of the BIM model to ensure that the model was correct before the O&M work started.
This project first compared various survey methods, and based on their advantages and disadvantages, chose the laser scanning method and manual survey method for experiments. Then using two selected methods to do site surveying for HUKUST parking lot and LTK to SENG Commons. And the end, given survey recommendations for different types of as-built model verification based on the survey result.
N.A.
HKU BIM-based Building Approval E-submission in Hong Kong: Prospects and Challenges Thesis 04/2016 HUI Put -- N.A.
HKUST Development of Approaches in Embodied Carbon of Buildings: From Construction Materials to Building Structural Design Thesis 08/2016 Jielong GAN Global warming has been considered as a major environmental challenge nowadays. Among various sources of anthropogenic greenhouse gas (GHG) emissions, the building sector is one of the major contributors to global warming, in which a substantial amount of the GHG emissions are embodied carbon from construction material production and transportation. Embodied carbon can account for 50% of the life cycle GHG emissions in buildings, and this percentage can become more significant for those buildings with shorter service life or higher energy efficiency. Therefore, reducing the embodied carbon in buildings is critically important and can help decrease the life cycle GHG emissions in buildings, thereby pushing human’s living environment towards a sustainable and low carbon future.

This thesis uses two approaches to reducing the embodied carbon in buildings. The first approach focuses on the construction material aspect and aims to reduce the embodied carbon from the manufacturing processes and transportations of construction materials. In this thesis, only the cement-based material (i.e., concrete) and quarried material (i.e., aggregate) are studied using the construction materials approach, as they account for more than 60% of the embodied carbon in a reinforced concrete (RC) building. Methods to the reduction of embodied carbon of aggregate and concrete are proposed, considering the feature of each material. Aggregate is very heavy and generates a large amount of emissions during transportation, therefore the aggregate study presents a mathematical model based on life cycle assessment (LCA) and multi-objective optimization (MOO) in order to plan the optimal amount of aggregate from different supply sources. The model can help stakeholders formulate sustainable material supply strategies that minimize the embodied carbon and material cost. For the concrete study, embodied carbon from concrete mix proportions is more important. Thus, a systematic embodied carbon quantification and mitigation framework is proposed for low carbon concrete mix design. The parameters that significantly affect the mix design and embodied carbon of concrete, namely the compressive strength class, the cement type, the supplementary cementitious materials (SCMs) and the maximum aggregate size, are considered. The proposed framework can be used to identify the low carbon mix design for concrete, and the results serves as a basis for reducing the embodied carbon emissions in buildings.

Another approach to reducing the embodied carbon in buildings considers different kinds of construction materials together, and focuses on building design aspect in order to minimize the total amounts of construction materials and embodied carbon in buildings. While the previous studies in this particular stream concentrated on low-rise building, they overlooked the analysis on high-rise buildings. However, the structural forms, construction materials and component designs in high-rise buildings are different from those in low-rise buildings, which can cause a large variability in the embodied carbon estimates. Therefore, an embodied carbon accounting methodology based on building information modeling (BIM) for high-rise buildings is proposed in this thesis, and relationships between embodied carbon and the critical parameters in high-rise building design are evaluated through BIM and CFD technologies. A 60-story composite core-outrigger building is designed based on the structure of a typical high-rise building in Hong Kong (i.e., Cheung Kong Center), and then used as a reference for the comparative studies. The results of embodied carbon are expressed in terms of carbon dioxide equivalent (CO2-e). The first comparative study focuses on the material procurement strategies. The embodied carbon in the reference building is evaluated with different assumptions for the material manufacturing processes, the amounts of recycled scrap and cement substitutes, and the transportation distance. It is found that structural steel and rebar from traditional blast furnace account for 76% of the embodied carbon in high-rise buildings. If a contractor chooses to use steel from electric arc furnace (with 100% recycled scrap as the feedstock), the embodied carbon of a high-rise building can be decreased by 60%. As for concrete, 10-20% embodied carbon reduction is achieved by using 35% fly ash (FA) or 75% ground granulated blast-furnace slag (GGBS) in mix design. Comparative studies are also carried out to determine the embodied carbon associated with different construction materials, building heights and structural forms. The 60-story composite core-outrigger reference building has a unitary embodied carbon of 557 kg CO2-e/m2 gross floor area (GFA). If the construction material changes to structural steel, the unitary embodied carbon increases to 759 kg CO2-e/m2 GFA, while the value of embodied carbon decreases to 537 kg CO2-e/m2 GFA if RC is used in construction. Core-frame structures are suitable for buildings of 40 stories or below, with the minimum embodied carbon at 525 kg CO2-e/m2 GFA. The optimal height range for core-outrigger structures is from 50-story to 70-story with 530 kg CO2-e/m2 GFA, whereas tubular structures are in the range between 70-story and 90-story at 540 kg CO2-e/m2 GFA. The results serve as a basis for more environmentally friendly building design, thereby improving our built environment towards a sustainable and low carbon future.
N.A.
HKUST BIM-based Automatic Piping Layout Design and Schedule Optimization Thesis 08/2020 Jyoti SINGH Piping system is one crucial component in civil infrastructure that is designed to collect and transport fluid from the various sources to the point of distribution. The design, manufacture, coordination, scheduling, and installation of pipe systems is an important and necessary task and is one of the most time-consuming and complicated jobs in any piping project. Therefore, it is important and necessary to perform pipe systems design and scheduling efficiently. Better understanding of the complex design logic and installation options of a pipe system can enhance the reliability of designing and scheduling, which is crucial to achieve smooth and steady design and schedule flow. An efficient designing and scheduling of piping systems become more and more challenging due to various constraints such as physical, design, economical, and installation constraint. Current practice in the architecture, engineering and construction (AEC) industry involves pipe system design and installation as per enforced design codes, either by manual calculations, or by partial automation using computer-aided design software. Manual calculations are based on the experience of consultants and design codes, which is labor intensive, time consuming, and unadaptable to changes, and often leads to mistakes due to tedious nature of pipe design and coordination problems and the numerous calculations and decision-making involved. Therefore, complete automation with design and schedule optimization are required to economically plan pipe system design layout and generation of installation schedule.

Nowadays, Building Information Modelling (BIM) has been increasingly applied for architectural and structural design in civil engineering, especially in the building sector, since BIM have advantages for digital representation and information management. BIM technology is used to capture the 3D geometric and semantic information of the ceiling space, building components and pipe system information and parameters. BIM technology is used to capture the valuable information from 3D models to assist time based 4D modeling. However, existing research of BIM application for piping system design in building sector is lacking. To tackle the limitation of existing research, this thesis aims to develop an automated BIM-based approach for pipe systems design and schedule optimization.

For the design of pipe system layout, various factors such as building space geometry, system requirements, design code specifications, and locations and configurations of relevant equipments are considered. A framework based on building information modeling (BIM) for automatic pipe system design optimization in 3D environment. Heuristic algorithms are modified and used in a directed weighted graph to obtain the optimal feasible route for pipe system layout. Clashes among pipes and with building components are considered and subsequently avoided in the design optimization. The developed framework considers one-to-one, one-to-many, many-to-one connections of the pipe network routing. Comparison between heuristic routing algorithms is also presented in this research.

For installation schedule generation, this research proposes a new approach to automate pipe installation coordination and schedule optimization using 4D BIM. Category-based matching rules are used to automate the pairing and integration between 3D BIM models and installation activities. Constraint based analysis by sequence rule is developed to generate favorable sequence and coordination between pipe systems. Heuristic algorithm is adopted to optimize the generated practical schedules based on formulated objective function. All developed BIM-based framework and approaches are illustrated with related examples. Compared to current practices, these proposed approaches significantly reduce the time and cost for pipe system design layout and generating installation schedule.

This research has three parts. The first part is background study and literature review on pipe systems design and scheduling. The second part applies BIM-based framework to design piping system, including the following three studies: (1) an automated single pipe system design using modular approach, (2) multiple pipe system layout design optimization, and (3) comparison of developed approach with other optimization methods. The third part applies BIM-based framework for piping coordination and scheduling optimization
N.A.