FYPs/Thesis/Journal from Higher Education Institutions in Hong Kong


Below Information is provided by the Higher Insitutions signed MoU with CIC.



Date: From


Institution Title Type Date Author(s) Abstract Link
HKUST A BIM-based automated site layout planning framework for congested construction sites Journal 08/2015 Kumar, S., and Cheng, J.C.P. Site layout planning is often performed on construction sites to find the best arrangement of temporary facilities so that transportation distances of on-site personnel and equipment are minimized. It could be achieved by creating dynamic layout models, which capture the changing requirements of construction sites. However, formulating such models is extremely tedious because it requires much manual data input and changes to design and construction plans are manually updated by layout planners. This study presents an automated framework of creating dynamic site layout models by utilizing information from BIM. The A* algorithm is used in conjunction with genetic algorithms to develop an optimization framework that considers the actual travel paths of on-site personnel and equipment. To address the space limitation on site, our model optimizes the dimensions of facilities and also considers interior storage within buildings under construction. A case example is demonstrated to validate this framework and shows a 13.5% reduction in total travel distance compared with conventional methods. Link
HKUST Rebar Design Optimization and Prefabrication Automation Leveraging BIM Technology Report 06/2020 Tobias Cheuk Toa CHEUNG Steel reinforced concrete building structure is very common among Hong Kong. Cost estimation is an important part during the preparation process for a construction project. Nowadays in Hong Kong, the contractor use lots of time in this stage while some mistake may occur as the process is done manually. To reduce error and shorten cost estimation time, design optimization and prefabrication automation leveraging should be considered. This project aims to complete the two objectives by using Building Information Modeling and Dynamo. After the design, the moment envelope generated by ETABS should be extract and input for designing the structural components. When the design of structural component, coding in Dynamo should be able to calculate the construction cost estimation for the building. Construction joint, continuity of rebar and the matching of rebar should be considered and build a bar bending schedule.

This project will go through the reviewing of site solution for solving some common problems. After that, some algorithm will be review to check whether it suitable for solving the problem mathematically. At last, application of graph theory in python 3 is finished and full bin packing algorithm in python is finished for rebar matching to reduce material cost. Suggestion will be made for further study in this project.
HKUST A state-of-the-art review on mixed reality (MR) applications in the AECO industry Journal 11/2019 Cheng, J.C.P., Chen, K., and Chen, W. The ability to combine digital information with the real world enables mixed reality (MR) technology to provide a better display of information, resulting in its increasing popularity in various fields. The architecture, engineering, construction, and operation (AECO) industry is no exception. However, existing reviews on the use of MR technology can hardly keep up with the rapid development of MR applications. Therefore, a state-of-the-art review focusing on MR technology applications in the AECO industry is needed to reflect the current status of MR implementation in the AECO industry. This review is based on articles retrieved from well-acknowledged academic journals within the domain of the AECO industry. In this paper, 87 journal papers on MR applications are identified and classified into four categories: (1) applications in architecture and engineering, (2) applications in construction, (3) applications in operation, and (4) applications in multiple stages. Five basic components of MR, including spatial registration, display, user interaction, data storage, and multiuser collaboration, in each of the aforementioned 87 journal papers are identified and discussed. After reviewing the selected applications and corresponding MR components, this paper summarizes the challenges of MR development and provides insights into future trends of the MR technology in four aspects, namely: (1) accuracy of spatial registration, (2) user interface (UI), (3) data storage and transfer, and (4) multiuser collaboration. Link
HKUST Identifying potential opportunities of building information modeling for construction and demolition waste management and minimization Journal 03/2017 Won, J., and Cheng, J.C.P. The amount of waste generated in construction and demolition (C&D) processes is enormous. Therefore, many studies on efficient C&D waste minimization and management have been conducted. However, 21 process-related and 8 technology-related limitations in C&D waste management and minimization have not yet been resolved. Building information modeling (BIM) helps project participants improve the processes and technologies in the planning, design, construction, and demolition phases, thereby managing and minimizing C&D waste efficiently. Therefore, this paper identifies the potential opportunities of BIM for efficient C&D waste management and minimization, such as design review, 3D coordination, quantity take-off, phase planning, site utilization planning, construction system design, digital fabrication, and 3D control and planning. The BIM-based approaches can support C&D waste management and minimization processes and technologies by addressing existing limitations through in-depth literature review. The roles of project participants and information required for each BIM-based approach in C&D waste management and minimization are discussed with illustrative process maps. Link
HKUST Application of Mixed Reality Technology for Operations and Maintenance of Building Facilities Thesis 08/2019 Keyu CHEN The architecture, engineering, construction and operation (AECO) industry has been widely regarded as a highly resource consuming industry. Among different stages of the AECO industry, the operations and maintenance (O&M) lasts the longest in the lifecycle of a building and incurs more than 85% of the total costs, indicating the importance of optimizing management and improving efficiency during O&M. However, it was indicated that two-thirds of the estimated cost of facility management is lost due to inefficiencies during the O&M stage. With current approaches for O&M activities, it is difficult for people to directly visualize and update information of building facilities and many¬ facilities are hidden (e.g. ventilation ducts above ceilings and water pipes under floors). Therefore, this research aims to apply innovations to improve efficiency during the O&M stage. In recent years, professionals begin to realize the practical value of mixed reality (MR) technology, which can aid in various tasks during O&M. Through integrating virtual information with the real world, MR makes the information of users surrounding facilities readable and manipulable. However, there are two major limitations while implementing MR in O&M: (1) All existing methods for MR spatial registration have their own limitations in either accuracy or practicality. (2) There is a lack of efficient methods for data transfer from BIM to MR, which limits the functionality and complexity of MR applications. To tackle these limitations, this research develops an MR engine that can achieve accurate and robust MR spatial registration and efficient data transfer from BIM to MR.

For the development of the MR engine, an indoor localization approach is proposed for MR spatial registration. A transfer learning technique named transferable CNN-LSTM is proposed for improving the accuracy of localization and reducing Wi-Fi fingerprinting’s vulnerability to environmental dynamics. A deep learning approach that combines convolutional neural network (CNN) with long short term memory (LSTM) networks is first proposed to predict the locations of unlabeled fingerprints based on labeled fingerprints. Then the transferable CNN-LSTM model is derived from the CNN-LSTM networks based on transfer learning to improve the robustness against time and devices. The proposed transferable CNN-LSTM model is tested and compared with some conventional approaches and even some transfer learning approaches. Another part of the engine focuses on efficient mechanisms for BIM-to-MR data transfer. An ontology-based approach is proposed for transfer of semantic data. For geometric models, building components are classified into four types according to their different features and different model simplification algorithms are proposed accordingly. The algorithms were first tested with single components, and then a whole building was used to evaluate the overall performance of the developed mechanisms. As illustrated in the tests, the developed mechanisms can efficiently transfer both semantic information and geometric information of BIM models into MR applications, thus reducing the time for model transfer and improving the fluency of corresponding MR applications.

The developed MR engine is then applied to facility maintenance management (FMM) and emergency evacuation. To improve the efficiency of FMM, a BIM-based location aware MR collaborative framework is developed, with BIM as the data source, MR for interaction between users and facilities, and Wi-Fi fingerprinting for providing real-time location information. An experiment is designed to evaluate the effectiveness of the developed system framework. For emergency evacuation, a graph-based network is formed by integrating medial axis transform (MAT) with visibility graph (VG), with the addition of buffer zones. Closed-circuit television (CCTV) processing techniques are also developed to monitor the flow of people so that evacuees can avoid congested areas. An Internet of things (IoT) sensor network is established as well to detect the presence of hazardous areas. With the constructed graph-based network, congestion analysis and environment index of each area, an optimal evacuation path can be obtained and augmented with MR devices.

This research develops an MR engine that can improve the accuracy and robustness of conventional Wi-Fi fingerprinting based MR spatial registration and efficiency of BIM-to-MR data transfer. The developed MR engine has been implemented in FMM and emergency evacuation, illustrating the potential of the proposed approaches in improving the efficiency of O&M activities.
HKUST Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison Journal 04/2016 Deng, Y., Cheng, J.C.P., and Anumba, C.J. The Building Information Modeling (BIM) domain and the Geographic Information System (GIS) domain share a mutual need for information from each other. Information from GIS can facilitate BIM applications such as site selection and onsite material layout, while BIM models could help generate detailed models in GIS and achieve better utility management. The mapping between the key schemas in the BIM domain and the GIS domain is the most critical step towards interoperability between the two domains. In this study, Industry Foundation Classes (IFC) and City Geography Markup Language (CityGML) were chosen as the key schemas due to their wide applications in the BIM domain and the GIS domain, respectively. We used an instance-based method to generate the mapping rules between IFC and CityGML based on the inspection of entities representing the same component in the same model. It ensures accurate mapping between the two schemas. The transformation of coordinate systems and geometry are two major issues addressed in the instance-based method. Considering the difference in schema structure and information richness between the two schemas, a reference ontology called Semantic City Model was developed and an instance-based method was adopted. The Semantic City Model captures all the relevant information from BIM models and GIS models during the mapping process. Since CityGML is defined in five levels of detail (LoD), the harmonization among LoDs in CityGML was also developed in order to complete the mapping. The test results show that the developed framework can achieve automatic data mapping between IFC and CityGML in different LoDs. Furthermore, the developed Semantic City Model is extensible and can be the basis for other schema mappings between the BIM domain and the GIS domain. Link